Mon, 27 Oct 2014

15:45 - 16:45
Oxford-Man Institute

Phase transitions in Achlioptas processes

Lutz Warnke
(University of Cambridge)
Abstract

In the Erdös-Rényi random graph process, starting from an empty graph, in each step a new random edge is added to the evolving graph. One of its most interesting features is the `percolation phase transition': as the ratio of the number of edges to vertices increases past a certain critical density, the global structure changes radically, from only small components to a single giant component plus small ones.

In this talk we consider Achlioptas processes, which have become a key example for random graph processes with dependencies between the edges.

Starting from an empty graph these proceed as follows: in each step two potential edges are chosen uniformly at random, and using some rule one of them is selected and added to the evolving graph. We discuss why, for a large class of rules, the percolation phase transition is qualitatively comparable to the classical Erdös-Rényi process.

                                                      

Based on joint work with Oliver Riordan.

Mon, 27 Oct 2014

14:15 - 15:15
Oxford-Man Institute

Some results on maps that factor through a tree

Roger Zuest
(Institut Maths Jussieu -Paris)
Abstract

We give a necessary and sufficient condition for a map defined on a compact, quasiconvex and simply-connected space to factor through a tree. This condition can be checked using currents. In particular if the target is some Euclidean space and the map is H\"older continuous with exponent bigger than 1/2, such maps can be characterized by the vanishing of some integrals over the winding number. Moreover, this shows that if the target is the Heisenberg group equipped with the Carnot-Carath\'eodory metric and the H\"older exponent of the map is bigger than 2/3, the map factors through a tree.

Mon, 13 Oct 2014

15:45 - 16:45
Oxford-Man Institute

A-free Groups and Tree-free Groups

IAN CHISWELL
(Queen Mary University London)
Abstract

The idea of A-free group, where A is a discrete ordered abelian group, has been introduced by Myasnikov, Remeslennikov and Serbin. It generalises the construction of free groups. A proof will be outlined that a group is A-free for some A if and only if it acts freely and without inversions on a \lambda-tree, where \lambda is an arbitrary ordered abelian group.

Mon, 13 Oct 2014

14:15 - 15:15
Oxford-Man Institute

Ito map and iterated integrals

Horatio Boedihardjo
(Oxford-Man Institute)
Abstract

The Taylor expansion of a controlled differential equation suggests that the solution at time 1 depends on the driving path only through the latter's iterated integrals up to time 1, if the vector field is infinitely differentiable. Hambly and Lyons proved that this remains true for Lipschitz vector fields if the driving path has bounded total variation. We extend the Hambly-Lyons result for weakly geometric rough paths in finite dimension. Joint work with X. Geng, T. Lyons and D. Yang.    

 

 

Thu, 30 Oct 2014

16:00 - 17:00
L5

İkinci El Araç Değerleme

Fred Diamond
(King's College London)
Further Information

İkinci el araç değerleme sitesi: https://www.arabamkacpara.net

Abstract

I'll discuss work (part with Savitt, part with Dembele and Roberts) on two related questions: describing local factors at primes over p in mod p automorphic representations, and describing reductions of local crystalline Galois representations with prescribed Hodge-Tate weights.

Thu, 23 Oct 2014

16:00 - 17:00
L5

Şoför İş İlanları

Julio Andrade
(Oxford)
Further Information

Şoför iş ilanları: https://www.soforilan.com/

Abstract

In this seminar I will discuss a function field analogue of classical problems in analytic number theory, concerning the auto-correlations of divisor functions, in the limit of a large finite field.

Thu, 27 Nov 2014

16:00 - 17:00
L5

Twitter video indir

Przemyslaw Chojecki
(Oxford)
Further Information

Twitter video indirme sitesi: https://indireyim.com/

Abstract

The classical conjecture of Serre (proved by Khare-Winterberger) states that a continuous, absolutely irreducible, odd representation of the absolute Galois group of Q on two-dimensional F_p-vector space is modular. We show how one can formulate its analogue in characteristic 0. In particular we discuss the weight part of the conjecture. This is a joint work with John Bergdall.

Thu, 04 Dec 2014

16:00 - 17:00
L5

Twitter Video Download

Alexei Skorobogatov
(Imperial College London)
Further Information

Twitter Video Download: https://indireyim.com/

Abstract

Rational points on Kummer varieties can be studied through the variation of Selmer groups of quadratic twists of the underlying abelian variety, using an idea of Swinnerton-Dyer. We consider the case when the Galois action on 2-torsion has a large image. Under a mild additional assumption we prove the Hasse principle assuming the finiteness of relevant Shafarevich-Tate groups. This approach is inspired by the work of Mazur and Rubin.

Thu, 04 Dec 2014

17:30 - 18:30
L5

Towards a pseudo j-function

Adam Harris
(UEA)
Abstract

I will outline some recent work with Jonathan Kirby regarding the first stage in the construction of the pseudo j-function. In particular, I will go through the construction of the analogue of the canonical countable pseudo exponential field as the "Fraisse limit" of a category of "partial j-fields". Although I will be talking about the j-function throughout the talk, it is not necessary to know anything about the j-function to get something from the talk. In particular, even if you don't know what the j-function is, you will still hopefully have an understanding of how to construct the countable pseudo-exp by the end of the talk.
 

Subscribe to