Local-Global Principles and Fields Elementarily Characterised by Their Absolute Galois Groups
Abstract
Jochen Koenigsmann’s Habilitation introduced a classification of fields elementarily characterised by their absolute Galois groups, including two conjecturally empty families. The emptiness of one of these families would follow from a Galois cohomological conjecture concerning radically closed fields formulated by Koenigsmann. A promising approach to resolving this conjecture involves the use of local-global principles in Galois cohomology. This talk examines the conceptual foundations of this method, highlights its relevance to Koenigsmann’s classification, and evaluates existing local-global principles with regard to their applicability to this conjecture.
Almost sure convergence to a constant for a mean-aggregated term language
Abstract
17:00
The Koponen Conjecture
Abstract
The Grand Video awards are Poland's YouTube Oscars and Dawid was the winner in the 'Video Conversation' category. The video is in Polish.
Childcare Services will host a Returning Carers' Workshop on Wednesday 20 November at 10.30am. This online event is available to staff across the University, with a particular focus on those returning to work following a period or periods of maternity leave, paternity leave, adoption leave or parental leave. The goal is to provide recent returners with the information, tools, support and networks they need to ensure a smooth and successful return to work.
15:30
Frobenius categories and Homotopy Quantum Field Theories
Abstract
Topological Quantum Field Theories (TQFTs) have been studied as mathematical toy models for quantum field theories in physics and are described by a functor out of some bordism category. In dimension 2, TQFTs are fully classified by Frobenius algebras. Homotopy Quantum Field Theories (HQFTs), introduced by Turaev, consider additional homotopy data to some target space X on the bordism categories. For homotopy 1-types Turaev also gives a classification via crossed G-Frobenius algebras, where G denotes the fundamental group of X.
In this talk we will introduce a multi-object generalization of Frobenius algebras called Frobenius categories and give a version of this classification theorem involving the fundamental groupoid. Further, we will give a classification theorem for HQFTs with target homotopy 2-types by considering crossed modules (joint work with Alexis Virelizier).