Wed, 29 May 2024

16:00 - 17:00
L6

The Case for Knot Homologies

Maartje Wisse
(University College London)
Abstract

This talk will introduce Khovanov and Knot Floer Homology as tools for studying knots. I will then cover some applications to problems in knot theory including distinguishing embedded surfaces and how they can be used in the context of ribbon concordances. No prior knowledge of either will be necessary and lots of pictures are included.

Wed, 05 Jun 2024

16:00 - 17:00
L6

Weighted \(\ell^2\) Betti numbers

Ana Isaković
(University of Cambridge)
Abstract

In 2006, Jan Dymara introduced the concept of weighted \(\ell^2\) Betti numbers as a method of computing regular \(\ell^2\) Betti numbers of buildings. This notion of dimension is measured by using Hecke algebras associated to the relevant Coxeter groups. I will briefly introduce buildings and then give a comparison between the regular \(\ell^2\) Betti numbers and the weighted ones.

Wed, 24 Apr 2024
16:00
L6

Harmonic maps and virtual properties of mapping class groups

Ognjen Tošić
(University of Oxford)
Abstract

It is a standard result that mapping class groups of high genus do not surject the integers. This is easily shown by computing the abelianization of the mapping class group using a presentation. Once we pass to finite index subgroups, this becomes a conjecture of Ivanov. More generally, we can ask which groups admit epimorphisms from finite index subgroups of the mapping class group. In this talk, I will present a geometric approach to this question, using harmonic maps, and explain some recent results.

Mon, 17 Jun 2024
15:30
L3

The Brownian loop measure on Riemann surfaces and applications to length spectra

Professor Yilin Wang
(IHES)
Abstract
Lawler and Werner introduced the Brownian loop measure on the Riemann sphere in studying Schramm-Loewner evolution. It is a sigma-finite measure on Brownian-type loops, which satisfies conformal invariance and restriction property. We study its generalization on a Riemannian surface $(X,g)$. In particular, we express its total mass in every free homotopy class of closed loops on $X$ as a simple function of the length of the geodesic in the homotopy class for the constant curvature metric conformal to $g$. This identity provides a new tool for studying Riemann surfaces' length spectrum. One of the applications is a surprising identity between the length spectra of a compact surface and that of the same surface with an arbitrary number of cusps. This is a joint work with Yuhao Xue (IHES). 


 

Thu, 06 Jun 2024
18:00
33 Canada Square, Canary Wharf, E14 5LB

Frontiers in Quantitative Finance: Professor Steve Heston: Model-free Hedging of Option Variance and Skewness

Professor Steven Heston
(University of Maryland)
Further Information

Please register via our TicketSource page.

Abstract

Frontiers in Quantitative Finance is brought to you by the Oxford Mathematical and Computational Finance Group and sponsored by CitiGroup and Mosaic SmartData.

Abstract
This paper parsimoniously generalizes the VIX variance index by constructing model-free factor portfolios that replicate skewness and higher moments. It then develops an infinite series to replicate option payoffs in terms of the stock, bond, and factor returns. The truncated series offers new formulas that generalize the Black-Scholes formula to hedge variance and skewness risk.


About the speaker
Steve Heston is Professor of Finance at the University of Maryland. He is known for his pioneering work on the pricing of options with stochastic volatility.
Steve graduated with a double major in Mathematics and Economics from the University of Maryland, College Park in 1983, an MBA in 1985 followed by a PhD in Finance in 1990. He has held previous faculty positions at Yale, Columbia, Washington University, and the University of Auckland in New Zealand and worked in the private sector with Goldman Sachs in Fixed Income Arbitrage and in Asset Management Quantitative Equities.

Thu, 16 May 2024
18:00
Stirling Square, London, SW1Y 5AD

Frontiers in Quantitative Finance Seminar: Turning tail risks into tail winds: using information geometry for portfolio optimisation

Julien Turc
(BNP Paribas)
Further Information

Registration for the talk is free but required.

Register here.

Abstract

A wide variety of solutions have been proposed in order to cope with the deficiencies of Modern Portfolio Theory. The ideal portfolio should optimise the investor’s expected utility. Robustness can be achieved by ensuring that the optimal portfolio does not diverge too much from a predetermined allocation. Information geometry proposes interesting and relatively simple ways to model divergence. These techniques can be applied to the risk budgeting framework in order to extend risk budgeting and to unify various classical approaches in a single, parametric framework. By switching from entropy to divergence functions, the entropy-based techniques that are useful for risk budgeting can be applied to more traditional, constrained portfolio allocation. Using these divergence functions opens new opportunities for portfolio risk managers. This presentation is based on two papers published by the BNP Paribas QIS Lab, `The properties of alpha risk parity’ (2022, Entropy) and `Turning tail risks into tailwinds’ (2020, The Journal of Portfolio Management).

On AdS$_4$ deformations of celestial symmetries
Bittleston, R Bogna, G Heuveline, S Kmec, A Mason, L Skinner, D (26 Mar 2024)
Amplitudes at Strong Coupling as Hyper-Kähler Scalars.
Frost, H Gürdoğan, Ö Mason, L Physical review letters volume 132 issue 15 151603 (12 Apr 2024)
Thu, 16 May 2024

17:00 - 18:00
L3

Some model theory of Quadratic Geometries

Charlotte Kestner
(Imperial College London)
Abstract
I will introduce the theories of orthogonal spaces and quadratic geometries over infinite fields, giving some background on Lie coordinatisable structures, and bilinear forms over infinite fields. I will then go on to explain the quantifier elimination for these structures, and discuss the axiomatisation of their pseudo-finite completions and model companions.  This is joint work in progress with Nick Ramsey.


 

Subscribe to