Utility indifference pricing with market incompleteness
Monoyios, M Nonlinear Models in Mathematical Finance: New Research Trends in Option Pricing 67-100 (01 Apr 2008)
Mon, 29 Apr 2024
16:00
L2

New Lower Bounds For Cap Sets

Fred Tyrrell
(University of Bristol)
Abstract

A cap set is a subset of $\mathbb{F}_3^n$ with no solutions to $x + y + z = 0$ other than when $x = y = z$, or equivalently no non-trivial $3$-term arithmetic progressions. The cap set problem asks how large a cap set can be, and is an important problem in additive combinatorics and combinatorial number theory. In this talk, I will introduce the problem, give some background and motivation, and describe how I was able to provide the first progress in 20 years on the lower bound for the size of a maximal cap set. Building on a construction of Edel, we use improved computational methods and new theoretical ideas to show that, for large enough $n$, there is always a cap set in $\mathbb{F}_3^n$ of size at least $2.218^n$. I will then also discuss recent developments, including an extension of this result by Google DeepMind.

Tue, 23 Apr 2024

14:00 - 15:00
L4

A (quasi)-polynomial Bogolyubov theorem for finite simple groups

Noam Lifshitz
(Hebrew University of Jerusalem)
Abstract

We show that there exists $C>1$, such that if $A$ is a subset of a non-alternating finite simple group $G$ of density $|A|/|G|= \alpha$, then $AA^{-1}AA^{-1}$ contains a subgroup of density at least $\alpha^{C}$. We will also give a corresponding (slightly weaker) statement for alternating groups.

To prove our results we introduce new hypercontractive inequalities for simple groups. These allow us to show that the (non-abelian) Fourier spectrum of indicators of 'global' sets are concentrated on the high-dimensional irreducible representations. Here globalness is a pseudorandomness notion reminiscent of the notion of spreadness.

The talk is based on joint works with David Ellis, Shai Evra, Guy Kindler, Nathan Lindzey, and Peter Keevash, and Dor Minzer. No prior knowledge of representation theory will be assumed.

Tue, 04 Jun 2024

14:00 - 15:00
L5

Geometrisation of the Langlands correspondence

James Newton
(University of Oxford)
Abstract

I'll give an introduction to a recent theme in the Langlands program over number fields and mixed characteristic local fields (with a much older history over function fields). This is enhancing the traditional 'set-theoretic' Langlands correspondence into something with a more geometric flavour. For example, relating (categories of) representations of p-adic groups to sheaves on moduli spaces of Galois representations. No number theory or 'Langlands' background will be assumed!

Observation of seven astrophysical tau neutrino candidates with IceCube
Abbasi, R Ackermann, M Adams, J Agarwalla, S Aguilar, J Ahlers, M Alameddine, J Amin, N Andeen, K Anton, G Argüelles, C Ashida, Y Athanasiadou, S Axani, S Bai, X Balagopal, V Baricevic, M Barwick, S Basu, V Bay, R Beatty, J Becker Tjus, J Beise, J Bellenghi, C Benning, C BenZvi, S Berley, D Bernardini, E Besson, D Blaufuss, E Blot, S Bontempo, F Book, J Boscolo Meneguolo, C Böser, S Botner, O Böttcher, J Bourbeau, E Braun, J Brinson, B Brostean-Kaiser, J Burley, R Busse, R Butterfield, D Campana, M Carloni, K Carnie-Bronca, E Chattopadhyay, S Chau, N Chen, C Physical Review Letters volume 132 issue 15 (11 Apr 2024)
Nonlocal approximation of nonlinear diffusion equations
Carrillo, J Esposito, A Wu, J Calculus of Variations and Partial Differential Equations volume 63 issue 4 100-100 (13 Apr 2024)
Still from the lecture with Arkady

In recent decades much research has moved from corporates to academia, including to mathematicians. But mathematicians produce models with complex equations. How do they make them comprehensible to the people developing the product? 

Fri, 07 Jun 2024

15:00 - 16:00
L5

Morse Theory for Group Presentations and Applications

Ximena Fernandez
(Mathematical Institute, University of Oxford)
Abstract

Discrete Morse theory serves as a combinatorial tool for simplifying the structure of a given (regular) CW-complex up to homotopy equivalence, in terms of the critical cells of discrete Morse functions. In this talk, I will introduce a refinement of this theory that not only ensures homotopy equivalence with the simplified CW-complex but also guarantees a Whitehead simple homotopy equivalence. Furthermore, it offers an explicit description of the construction of the simplified Morse complex and provides bounds on the dimension of the complexes involved in the Whitehead deformation.
This refined approach establishes a suitable theoretical framework for addressing various problems in combinatorial group theory and topological data analysis. I will show applications of this technique to the Andrews-Curtis conjecture and computational methods for inferring the fundamental group of point clouds.

This talk is based on the article: Fernandez, X. Morse theory for group presentations. Trans. Amer. Math. Soc. 377 (2024), 2495-2523.

Fri, 31 May 2024

15:00 - 16:00
L5

Topology for spatial data from oncology and neuroscience

Bernadette Stolz-Pretzer
(École Polytechnique Fédérale de Lausanne (EPFL))
Abstract

State-of-the art experimental data promises exquisite insight into the spatial heterogeneity in tissue samples. However, the high level of detail in such data is contrasted with a lack of methods that allow an analysis that fully exploits the available spatial information. Persistent Homology (PH) has been very successfully applied to many biological datasets, but it is typically limited to the analysis of single species data. In the first part of my talk, I will highlight two novel techniques in relational PH that we develop to encode spatial heterogeneity of multi species data. Our approaches are based on Dowker complexes and Witness complexes. We apply the methods to synthetic images generated by an agent-based model of tumour-immune cell interactions. We demonstrate that relational PH features can extract biological insight, including the dominant immune cell phenotype (an important predictor of patient prognosis) and the parameter regimes of a data-generating model. I will present an extension to our pipeline which combines graph neural networks (GNN) with local relational PH and significantly enhances the performance of the GNN on the synthetic data. In the second part of the talk, I will showcase a noise-robust extension of Reani and Bobrowski’s cycle registration algorithm  (2023) to reconstruct 3D brain atlases of Drosophila flies from a sequence of μ-CT images.

Subscribe to