14:15
Weinstein manifolds without arboreal skeleta
Abstract
The relationship between the topological or homotopy-invariant properties of a symplectic manifold X and the set of possible immersed or embedded Lagrangian submanifolds of X is rich and mostly mysterious. In 2020, D. Alvarez-Gavela, Y. Eliashberg, and D. Nadler proved that any Weinstein manifold (e.g. an affine variety) admitting a Lagrangian plane field retracts onto a Lagrangian submanifold with arboreal singularities (a certain class of singularities which can be described combinatorially). I will discuss work in progress with D. Alvarez-Gavela and T. Large investigating the other direction, in which we prove a partial converse to the AGEN result and show that most Weinstein manifolds do not admit such skeleta. This suggests that the Floer-theoretic invariants of some well-known open symplectic manifolds may be more complicated than expected.
Isolating internal waves using on-the-fly Lagrangian filtering in numerical simulations
Dr Lois Baker is the Flora Philip Fellow and EPSRC National Fellow in Fluid Dynamicsa in the School of Mathematics at the University of Edinburgh. Her research involves using mathematical and numerical models to understand oceanic fluid dynamics. Baker is particularly interested in the interactions of internal waves and submesoscale vortices that are generated in the deep and upper ocean.
Abstract
In geophysical and astrophysical flows, we are often interested in understanding the impact of internal waves on the non-wavelike flow. For example, oceanic internal waves generated at the surface and the seafloor transfer energy from the large scale flow to dissipative scales, thereby influencing the global ocean state. A primary challenge in the study of wave-flow interactions is how to separate these processes – since waves and non-wavelike flows can vary on similar spatial and temporal scales in the Eulerian frame. However, in a Lagrangian flow-following frame, temporal filtering offers a convenient way to isolate waves. Here, I will discuss a recently developed method for evolving Lagrangian mean fields alongside the governing equations in a numerical simulation, and extend this theory to allow effective filtering of waves from non-wavelike processes.
Moriarty Lecture & OCIAM Dinner
Patterned illumination for complex spatio-temporal morphing of LCE sheets
Biography
John Biggins read natural sciences at Cambridge University. He specialized in experimental and theoretical physics, and was the top ranked student in his cohort. He then did a PhD in the theory of condensed matter group under the supervision of Prof Mark Warner FRS, working on the exotic elasticity of a new phase of soft matter known as a liquid crystal elastomer (LCE). During his PhD he made an extended visit to Caltech to work with Prof Kaushik Bhattacharya on analogies between LCEs and shape memory alloys.
After his PhD, John won an 1851 Royal Commission Fellowship and traveled to Harvard to work with Prof L. Mahadevan on instabilities in soft solids and biological tissues, including creasing, fingering and brain folding. He then returned to Cambridge, first as Walter Scott Research Fellow at Trinity Hall and then as an early career lecturer in the tcm group at the Cavendish Laboratory. During this time, he explained the viral youtube phenomena of the chain fountain, and explored how surface tension can sculpt soft solids, leading to a solid analogue of the Plateau–Rayleigh instability. He also taught first year oscillations, and a third year course "theoretical physics 1."
In 2017, John was appointed to an Assistant Professorship of applied mechanics in Cambridge Engineering Department, where he teaches mechanics and variational methods. In 2019 he won a UKRI Future Leaders Fellowship on "Liquid Crystal Elastomers, from new materials via new mechanics to new machines." This grant added an exciting experimental component to the group, and underpins our current focus on using LCEs as artificial muscles in soft mechanical devices.
Abstract
Liquid crystal elastomers are rubbery solids containing molecular LC rods that align along a common director. On heating, the alignment is disrupted, leading to a substantial (~50%) contraction along the director. In recent years, there has been a great deal of interest in fabrication LCE sheets with a bespoke alignment pattern. On heating, these patterns generate corresponding patterns of contraction that can morph a sheet into a bespoke curved surface such as a cone or face. Moreover, LCEs can also be activated by light, either photothermally or photochemically, leading to similarly large contractions. Stimulation by light also introduces an important new possibility: using spatio-temporal patterns of illumination to morph a single LCE sample into a range of different surfaces. Such stimulation can enable non-reciprocal actuation for viscous swimming or pumping, and control over the whole path taken by the sheet through shape-space rather than just the final destination. In this talk, I will start by with an experimental example of a spatio-temporal pattern of illumination being used to actuate an LCE peristaltic pump. I will then introduce a second set of experiments, in which a monodomain sheet morphs first into a cone, an anti-cone and then an array of cones upon exposure to different patterns of illumination. Finally, I will then discuss the general problem of how to choose a pattern of illumination to morph a director-patterned sheet into an arbitrary surface, first analytically for axisymmetric cases, then numerically for low symmetry cases. This last study exceeds our current experimental capacity, but highlights how, with full spatio-temporal control over the stimulation magnitude, one can choreograph an LCE sheet to undergo almost any pattern of morphing.
Static friction models, buckling and lift-off for a rod deforming on a cylinder
Dr. Rehan Shah, Lecturer (Assistant Professor) in Mathematics and Engineering Education, Queen Mary University of London
Abstract
We develop a comprehensive geometrically-exact theory for an end-loaded elastic rod constrained to deform on a cylindrical surface. By viewing the rod-cylinder system as a special case of an elastic braid, we are able to obtain all forces and moments imparted by the deforming rod to the cylinder as well as all contact reactions. This framework allows us to give a complete treatment of static friction consistent with force and moment balance. In addition to the commonly considered model of hard frictionless contact, we analyse two friction models in which the rod, possibly with intrinsic curvature, experiences either lateral or tangential friction. As applications of the theory we study buckling of the constrained rod under compressive and torsional loads, finding critical loads to depend on Coulomb-like friction parameters, as well as the tendency of the rod to lift off the cylinder under further loading. The cylinder can also have arbitrary orientation relative to the direction of gravity. The cases of a horizontal and vertical cylinder, with gravity having only a lateral or axial component, are amenable to exact analysis, while numerical results map out the transition in buckling mechanism between the two extremes. Weight has a stabilising effect for near-horizontal cylinders, while for near-vertical cylinders it introduces the possibility of buckling purely due to self-weight. Our results are relevant for many engineering and medical applications in which a slender structure winds inside or outside a cylindrical boundary.
What do maypole dancing, grocery delivery, and the quadratic formula all have in common? The answer is: braids! In this Oxford Mathematics Public Lecture, Tara will explore how the ancient art of weaving strands together manifests itself in a variety of modern settings, both within mathematics and in our wider culture.