Tue, 02 Jul 2024

15:30 - 16:30
North Lecture Theatre, St John’s College Oxford

Tracial Classification of C*-algebras

Jorge Castillejos Lopez
(UNAM Mexico)
Abstract

The classification of simple, unital, nuclear UCT C*-algebras with finite nuclear dimension can be achieved using an invariant derived from K-theory and tracial information. In this talk, I will present a classification theorem for certain classes of C*-algebras that rely solely on tracial deformations.  

Tue, 11 Jun 2024

16:00 - 17:00
C2

Metric invariants from curvature-like inequalities

Florent Baudier
Abstract

A central theme in the 40-year-old Ribe program is the quest for metric invariants that characterize local properties of Banach spaces. These invariants are usually closely related to the geometry of certain sequences of finite graphs (Hamming cubes, binary trees, diamond graphs...) and provide quantitative bounds on the bi-Lipschitz distortion of those graphs.

A more recent program, deeply influenced by the late Nigel Kalton, has a similar goal but for asymptotic properties instead. In this talk, we will motivate the (asymptotic) notions of infrasup umbel convexity (introduced in collaboration with Chris Gartland (UC San Diego)) and bicone convexity. These asymptotic notions are inspired by the profound work of Lee, Mendel, Naor, and Peres on the (local) notion of Markov convexity and of Eskenazis, Mendel, and Naor on the (local) notion of diamond convexity. 

All these metric invariants share the common feature of being derived from point-configuration inequalities which generalize curvature inequalities.

If time permits we will discuss the values of these invariants for Heisenberg groups.

Tue, 14 May 2024

16:00 - 17:00
C2

Non-isomorphic simple AH algebras with the same Elliott invariant and same radius of comparison

Ilan Hirshberg
(Ben-Gurion University of the Negev)
Abstract

Recently, Elliott, Li, and Niu proved a classification theorem for Villadsen-type algebras using the combination of the Elliott invariant and the radius of comparison, an invariant that was introduced by Toms in order to distinguish between certain non-isomorphic AH algebras with the same Elliott invariant. This might have raised the prospect that the Elliott classification program can be extended beyond the Z-stable case by adding the radius of comparison to the invariant. I will discuss a recent preprint in which we show that this is not the case: we construct an uncountable family of nonisomorphic AH algebras with the same Elliott and same radius of comparison. We can distinguish between them using a finer invariant, which we call the local radius of comparison. This is joint work with N. Christopher Phillips.

Tue, 07 May 2024

16:00 - 17:00
C2

Title: $C^*$ -diagonal of Inductive limits of 1-dimensional Noncommutative CW-complexes

Dolapo Oyetunbi
(University of Ottawa)
Abstract

A $C^*$-diagonal is a certain commutative subalgebra of a $C^∗$ -algebra with a rich structure. Renault and Kumjian showed that finding a $C^*$ -diagonal of a $C^∗$-algebra is equivalent to realizing the $C^*$-algebra via a groupoid. This establishes a close connection between $C^∗$-diagonals and dynamics and allows one to relate the geometric properties of groupoids to the properties of $C^∗$ -diagonals. 

In this talk, I will explore the unique pure state extension property of an Abelian $C^*$-subalgebra of a 1-dim NCCW complex, the approximation of morphisms between two 1-dim NCCW complexes by $C^*$-diagonal preserving morphisms, and the existence of $C^*$-diagonal in inductive limits of certain 1-dim NCCW complexes.

To modulate or to skip: de-escalating PARP inhibitor maintenance therapy in ovarian cancer using adaptive therapy
Strobl, M Martin, A West, J Gallaher, J Robertson-Tessi, M Gatenby, R Wenham, R Maini, P Damaghi, M Anderson, A Cell Systems (20 May 2024)
Generalised Graph Laplacians and Canonical Feynman Integrals with Kinematics
Brown, F Communications in Mathematical Physics volume 405 issue 2 (09 Feb 2024)
Thu, 13 Jun 2024
16:00
L5

The Gross--Kohnen--Zagier theorem via $p$-adic uniformization

Martí Roset Julià
(McGill University)
Abstract

Let $S$ be a set of rational places of odd cardinality containing infinity and a rational prime $p$. We can associate to $S$ a Shimura curve $X$ defined over $\mathbb{Q}$. The Gross--Kohnen--Zagier theorem states that certain generating series of Heegner points of $X$ are modular forms of weight $3/2$ valued in the Jacobian of $X$. We will state this theorem and outline a new approach to proving it using the theory of $p$-adic uniformization and $p$-adic families of modular forms of half-integral weight. This is joint work with Lea Beneish, Henri Darmon, and Lennart Gehrmann.

Thu, 06 Jun 2024
16:00
L5

Intersections of geodesics on modular curves and Hilbert modular forms

Håvard Damm-Johnsen
( Oxford)
Abstract

The 12th of Hilbert's 23 problems posed in 1900 asks for an explicit description of abelian extensions of a given base field. Over the rationals, this is given by the exponential function, and over imaginary quadratic fields, by meromorphic functions on the complex upper half plane.  Darmon and Vonk's theory of rigid meromorphic cocycles, or "RM theory", includes conjectures giving a $p$-adic solution over real quadratic fields. These turn out to be closely linked to purely topological questions about intersections of geodesics in the upper half plane, and to $p$-adic deformations of Hilbert modular forms. I will explain an extension of results of Darmon, Pozzi and Vonk proving some of these conjectures, and some ongoing work concerning analogous results on Shimura curves.

Thu, 23 May 2024
16:00
L5

Square roots for symplectic L-functions and Reidemeister torsion

Amina Abdurrahman
(IHES)
Abstract

We give a purely topological formula for the square class of the central value of the L-function of a symplectic representation on a curve. We also formulate a topological analogue of the statement, in which the central value of the L-function is replaced by Reidemeister torsion of 3-manifolds. This is related to the theory of epsilon factors in number theory and Meyer’s signature formula in topology among other topics. We will present some of these ideas and sketch aspects of the proof. This is joint work with Akshay Venkatesh.

Thu, 16 May 2024
16:00
L5

Ergodic Approach to the Mixing Conjecture

George Robinson
( Oxford)
Abstract

The Mixing Conjecture of Michel-Venkatesh has now taken on additional arithmetic significance via Wiles' new approach to modularity. Inspired by this, we present the best currently available method, pioneered by Khayutin's proof for quaternion algebras over the rationals, which we have successfully applied to totally real fields. The talk will overview the method, which brings a suprising combination of ergodic theory, analysis and geometry to bear on this arithmetic problem.

Subscribe to