The Function-Rips Multifiltration as an Estimator
Abstract
Say we want to view the function-Rips multifiltration as an estimator. Then, what is the target? And what kind of consistency, bias, or convergence rate, should we expect? In this talk I will present on-going joint work with Ethan André (Ecole Normale Supérieure) that aims at laying the algebro-topological ground to start answering these questions.
When we needed a design for our Oxford Mathematics merchandise, we thought we didn't have a badge or coat of arms. Until we realised we did. At the entrance to our building is the Penrose tiling, our mathematical coat of arms.
So our designers, the excellent Stephane Harrison and his team at William Joseph, came up with the idea of the exploding tiles. They have now become our unofficial logo (if you can have such a thing), on all our merchandise and materials.
15:30
The Allen-Cahn equation with weakly critical initial datum
Abstract
Inspired by questions concerning the evolution of phase fields, we study the Allen-Cahn equation in dimension 2 with white noise initial datum. In a weak coupling regime, where the nonlinearity is damped in relation to the smoothing of the initial condition, we prove Gaussian fluctuations. The effective variance that appears can be described as the solution to an ODE. Our proof builds on a Wild expansion of the solution, which is controlled through precise combinatorial estimates. Joint works with Simon Gabriel, Martin Hairer, Khoa Lê and Nikos Zygouras.
15:30
McKean-Vlasov S(P)Des with additive noise
Abstract
Many systems in the applied sciences are made of a large number of particles. One is often not interested in the detailed behaviour of each particle but rather in the collective behaviour of the group. An established methodology in statistical mechanics and kinetic theory allows one to study the limit as the number of particles in the system N tends to infinity and to obtain a (low dimensional) PDE for the evolution of the density of the particles. The limiting PDE is a non-linear equation, where the non-linearity has a specific structure and is called a McKean-Vlasov nonlinearity. Even if the particles evolve according to a stochastic differential equation, the limiting equation is deterministic, as long as the particles are subject to independent sources of noise. If the particles are subject to the same noise (common noise) then the limit is given by a Stochastic Partial Differential Equation (SPDE). In the latter case the limiting SPDE is substantially the McKean-Vlasov PDE + noise; noise is furthermore multiplicative and has gradient structure. One may then ask the question about whether it is possible to obtain McKean-Vlasov SPDEs with additive noise from particle systems. We will explain how to address this question, by studying limits of weighted particle systems.
This is a joint work with L. Angeli, J. Barre, D. Crisan, M. Kolodziejzik.
15:30
Rough Stochastic Analysis with Jumps
Abstract
Rough path theory provides a framework for the study of nonlinear systems driven by highly oscillatory (deterministic) signals. The corresponding analysis is inherently distinct from that of classical stochastic calculus, and neither theory alone is able to satisfactorily handle hybrid systems driven by both rough and stochastic noise. The introduction of the stochastic sewing lemma (Khoa Lê, 2020) has paved the way for a theory which can efficiently handle such hybrid systems. In this talk, we will discuss how this can be done in a general setting which allows for jump discontinuities in both sources of noise.
15:30
Regularity of Random Wavelet Series
Abstract
This presentation focuses on the study of the regulartiy of random wavelet series. We first study their belonging to certain functional spaces and we compare these results with long-established results related to random Fourier series. Next, we show how the study of random wavelet series leads to precise pointwise regularity properties of processes like fractional Brownian motion. Additionally, we explore how these series helps create Gaussian processes with random Hölder exponents.
15:30
Stochastic Games of Intensity Control for (Ticket) Pricing
Abstract
One way to capture both the elastic and stochastic reaction of purchases to price is through a model where sellers control the intensity of a counting process, representing the number of sales thus far. The intensity describes the probabilistic likelihood of a sale, and is a decreasing function of the price a seller sets. A classical model for ticket pricing, which assumes a single seller and infinite time horizon, is by Gallego and van Ryzin (1994) and it has been widely utilized by airlines, for instance. Extending to more realistic settings where there are multiple sellers, with finite inventories, in competition over a finite time horizon is more complicated both mathematically and computationally. We discuss some dynamic games of this type, from static to two player to the associated mean field game, with some numerical and existence-uniqueness results.
Based on works with Andrew Ledvina and with Emre Parmaksiz.
15:30
Nonparametric generative modeling for time series via Schrödinger bridge
Abstract
We propose a novel generative model for time series based on Schrödinger bridge (SB) approach. This consists in the entropic interpolation via optimal transport between a reference probability measure on path space and a target measure consistent with the joint data distribution of the time series. The solution is characterized by a stochastic differential equation on finite horizon with a path-dependent drift function, hence respecting the temporal dynamics of the time series distribution. We estimate the drift function from data samples by nonparametric, e.g. kernel regression methods, and the simulation of the SB diffusion yields new synthetic data samples of the time series. The performance of our generative model is evaluated through a series of numerical experiments. First, we test with autoregressive models, a GARCH Model, and the example of fractional Brownian motion, and measure the accuracy of our algorithm with marginal, temporal dependencies metrics, and predictive scores. Next, we use our SB generated synthetic samples for the application to deep hedging on real-data sets.
15:30