Wrapped branes and punctured horizons
Bobev, N Bomans, P Gautason, F (10 Dec 2019)
Comments on chiral algebras and $Ω$-deformations
Bobev, N Bomans, P Gautason, F (05 Oct 2020)
Marginal deformations from type IIA supergravity
Bobev, N Bomans, P Gautason, F Min, V (02 Mar 2021)
Bubble instability of mIIA on $\mathrm{AdS}_4\times S^6$
Bomans, P Cassani, D Dibitetto, G Petri, N (15 Oct 2021)
Flow techniques for non-geometric RDEs on manifolds
Kern, H Lyons, T (20 Oct 2023)
Tue, 31 Oct 2023
14:00
L5

Elliptic representations

Dan Ciubotaru
(Oxford)
Abstract

In representation theory, the characters of induced representations are explicitly known in terms of the character of the inducing representation. This leads to the question of understanding the elliptic representation space, i.e., the space of representations modulo the properly (parabolically) induced characters. I will give an overview of the description of the elliptic space for finite Weyl groups, affine Weyl groups, affine Hecke algebras, and their connection with the geometry of the nilpotent cone of a semisimple complex Lie algebra. These results fit together in the representation theory of semisimple p-adic groups, where they lead to a new description of the elliptic space within the framework of the local Langlands parameterisation.

Mon, 20 Nov 2023
16:00
L1

Post-Quantum Cryptography (and why I’m in the NT corridor)

Patrick Hough
(University of Oxford)
Abstract

In this talk I will give a brief introduction to the field of post-quantum (PQ) cryptography, introducing a few of the most popular computational hardness assumptions. Second, I will give an overview of a recent work of mine on PQ electronic voting. I’ll finish by presenting a short selection of ‘exotic’ cryptographic constructions that I think are particularly hot at the moment (no, not blockchain). The talk will be definitionally light since I expect the area will be quite new to many and I hope this will make for a more engaging introduction.

Mon, 13 Nov 2023
16:00
C3

Modular generating series

Mads Christensen
(University College London)
Abstract

For many spaces of interest to number theorists one can construct cycles which in some ways behave like the coefficients of modular forms. The aim of this talk is to give an introduction to this idea by focusing on examples coming from modular curves and Heegner points and the relevant work of Zagier, Gross-Kohnen-Zagier and Borcherds. If time permits I will discuss generalizations to other spaces.

Thu, 30 Nov 2023

11:00 - 12:00
C6

Homotopy type of categories of models

Jinhe Ye
(University of Oxford)
Abstract

For a complete theory T, Lascar associated with it a Galois group which we call the Lacsar group. We will talk about some of my work on recovering the Lascar group as the fundamental group of Mod(T) and some recent progress in understanding the higher homotopy groups.

Subscribe to