Mon, 15 May 2023
16:00
C3

Ranges of polynomials control degree ranks of Green and Tao over finite prime fields

Thomas Karam
(University of Oxford)
Abstract

Let $p$ be a prime, let $1 \le t < d < p$ be integers, and let $S$ be a non-empty subset of $\mathbb{F}_p$ (which may be thought of as being $\{0,1\}$). We will establish that if a polynomial $P:\mathbb{F}_p^n \to \mathbb{F}_p$ with degree $d$ is such that the image $P(S^n)$ does not contain the full image $A(\mathbb{F}_p)$ of any non-constant polynomial $A: \mathbb{F}_p \to \mathbb{F}_p$ with degree at most $t$, then $P$ coincides on $S^n$ with a polynomial $Q$ that in particular has bounded degree-$\lfloor d/(t+1) \rfloor$-rank in the sense of Green and Tao, and has degree at most $d$. Likewise, we will prove that if the assumption holds even for $t=d$ then $P$ coincides on $S^n$ with a polynomial determined by a bounded number of coordinates and with degree at most $d$.

Mon, 08 May 2023
16:00

TBD

TBD
Mon, 01 May 2023
16:00
C3

Combinatorics goes perverse: An Erdős problem on additive Sidon bases

Cédric Pilatte
Abstract

In 1993, Erdős, Sárközy and Sós posed the question of whether there exists a set $S$ of positive integers that is both a Sidon set and an asymptotic basis of order $3$. This means that the sums of two elements of $S$ are all distinct, while the sums of three elements of $S$ cover all sufficiently large integers. In this talk, I will present a construction of such a set, building on ideas of Ruzsa and Cilleruelo. The proof uses a powerful number-theoretic result of Sawin, which is established using cutting-edge algebraic geometry techniques.

Mon, 24 Apr 2023
16:00
C3

The weight part of Serre's conjecture

Martin Ortiz
(UCL (LSGNT))
Abstract

Serre's conjecture (now a theorem) predicts that an irreducible 2-dimensional odd
Galois representation of $\mathbb Q$ with coefficients in $\bar{\mathbb F}_p$ comes from the mod p reduction of
a modular form. A key feature is that two modular forms of different weights can have the same
mod p reduction. Fixing a modular form $f$, the weight part of Serre's conjecture seeks to find all
the possible weights where one can find a modular form congruent to $f$ mod $p$. The recipe for these
weights was conjectured by Serre, and it depends only on the local Galois representation at $p$. I
will explain the ideas involved in Edixhoven's proof of the weight part, and if time allows, I
will briefly say something about what the generalizations beyond $\operatorname{GL}_2/\mathbb Q$ might look like. 

Feynman symmetries of the Martin and c_2 invariants of regular graphs
Panzer, E Yeats, K Combinatorial Theory volume 5 issue 1 (15 Mar 2025)
Thu, 18 May 2023
18:30
Science Museum, London, SW7

Oxford Mathematics London Public Lecture: The Magic of the Primes - James Maynard with Hannah Fry SOLD OUT

James Maynard and Hannah Fry
Further Information

Please note this lecture is at the Science Museum, London, SW7.

In July 2022 Oxford Mathematician James Maynard received the Fields Medal, the highest honour for a mathematician under the age of 40, for his groundbreaking work on prime numbers. In this lecture he will explain the fascinations and frustrations of the primes before sitting down with Hannah to discuss his work and his life. 

Please email @email to register.

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Primes image

 

PARTIAL EVALUATIONS AND THE COMPOSITIONAL STRUCTURE OF THE BAR CONSTRUCTION
Constantin, C Fritz, T Perrone, P Shapiro, B Theory and Applications of Categories volume 39 issue 11 322-364 (01 Jan 2023)
Tue, 09 May 2023

16:00 - 17:00
L6

On the asymptotic analysis of the Calogero-Painlevé systems and the Tracy-Widom$_\beta$ distribution for $\beta$=6

Alexander Its
(IUPUI)
Abstract

The Calogero-Painlevé systems were introduced in 2001 by K. Takasaki as a natural generalization of the classical Painlevé equations to the case of the several Painlevé “particles” coupled via the Calogero type interactions. In 2014, I. Rumanov discovered a remarkable fact that a particular case of the Calogero– Painlevé II equation describes the Tracy-Widom distribution function for the general $\beta$-ensembles with the even values of parameter $\beta$. in 2017 work of M. Bertola, M. Cafasso , and V. Rubtsov, it was proven that all Calogero-Painlevé systems are Lax integrable, and hence their solutions admit a Riemann-Hilbert representation. This important observation has opened the door to rigorous asymptotic analysis of the Calogero-Painlevé equations which in turn yields the possibility of rigorous evaluation of the asymptotic behavior of the Tracy-Widom distributions for the values of $\beta$ beyond the classical $\beta =1, 2, 4$. In the talk these recent developments will be outlined with a special focus on the Calogero-Painlevé system corresponding to $\beta = 6$. This is a joint work with Andrei Prokhorov.

Subscribe to