Mon, 22 May 2023

17:30 - 18:30
L6

Scaling Optimal Transport for High dimensional Learning

Gabriel Peyre
(École Normale Supérieure )
Further Information

Please note a different room and that there are two pde seminars on Monday of W5 (May 22).

Abstract

Optimal transport (OT) has recently gained a lot of interest in machine learning. It is a natural tool to compare in a geometrically faithful way probability distributions. It finds applications in both supervised learning (using geometric loss functions) and unsupervised learning (to perform generative model fitting). OT is however plagued by the curse of dimensionality, since it might require a number of samples which grows exponentially with the dimension. In this talk, I will explain how to leverage entropic regularization methods to define computationally efficient loss functions, approximating OT with a better sample complexity. More information and references can be found on the website of our book "Computational Optimal Transport".

Tue, 25 Apr 2023
15:30
L2

HKKP Theory for algebraic stacks

Andres Ibanez Nunez (Oxford)
Abstract

In work of Haiden-Katzarkov-Konsevich-Pandit (HKKP), a canonical filtration, labeled by sequences of real numbers, of a semistable quiver representation or vector bundle on a curve is defined. The HKKP filtration is a purely algebraic object that depends only on a lattice, yet it governs the asymptotic behaviour of a natural gradient flow in the space of metrics of the object. In this talk, we show that the HKKP filtration can be recovered from the stack of semistable objects and a so called norm on graded points, thereby generalising the HKKP filtration to other moduli problems of non-linear origin.

 

Still from film featuring the Fast Hat

Welcome to another episode of 'Me and My Maths', starring Adam, Sofia, Edwina and Yixuan. 

In 90 seconds each of our guests describes life in Oxford Mathematics.

New bounds on the condition number of the Hessian of the preconditioned
variational data assimilation problem
Tabeart, J Dance, S Lawless, A Nichols, N Waller, J (16 Oct 2020) http://arxiv.org/abs/2010.08416v2
A target-cell limited model can reproduce influenza infection dynamics in hosts with differing immune responses
Sachak-Patwa, R Lafferty, E Schmit, C Thompson, R Byrne, H Journal of Theoretical Biology volume 567 (11 Apr 2023)
Zilber-Pink for raising to the power i
Pila, J Model Theory volume 3 issue 2 625-645 (19 Jul 2024)
Wed, 14 Jun 2023
16:00
L6

Asymptotic dimension of groups

Panagiotis Tselekidis
(University of Oxford)
Abstract

Asymptotic dimension was introduced by Gromov as an invariant of finitely generated groups. It can be shown that if two metric spaces are quasi-isometric then they have the same asymptotic dimension. In 1998, the asymptotic dimension achieved particular prominence in geometric group theory after a paper of Guoliang Yu, which proved the Novikov conjecture for groups with finite asymptotic dimension. Unfortunately, not all finitely generated groups have finite asymptotic dimension. 

In this talk, we will introduce some basic tools to compute the asymptotic dimension of groups. We will also find upper bounds for the asymptotic dimension of a few well-known classes of finitely generated groups, such as hyperbolic groups, and if time permits, we will see why one-relator groups have asymptotic dimension at most two.

Wed, 07 Jun 2023
16:00
L6

TBC

TBC
Wed, 31 May 2023
16:00
L6

Accessibility, QI-rigidity, and planar graphs

Joseph MacManus
(University of Oxford)
Abstract

A common pastime of geometric group theorists is to try and derive algebraic information about a group from the geometric properties of its Cayley graphs. One of the most classical demonstrations of this can be seen in the work of Maschke (1896) in characterising those finite groups with planar Cayley graphs. Since then, much work has been done on this topic. In this talk, I will attempt to survey some results in this area, and show that the class group with planar Cayley graphs is QI-rigid.

Subscribe to