Patterns
Patterns
A mathematical journey through scales - Martin Hairer
Oxford Mathematics Public Lecture
A mathematical journey through scales - Martin Hairer
The tiny world of particles and atoms and the gigantic world of the entire universe are separated by about forty orders of magnitude. As we move from one to the other, the laws of nature can behave in drastically different ways, sometimes obeying quantum physics, general relativity, or Newton’s classical mechanics, not to mention other intermediate theories.
Understanding the transformations that take place from one scale to another is one of the great classical questions in mathematics and theoretical physics, one that still hasn't been fully resolved. In this lecture, we will explore how these questions still inform and motivate interesting problems in probability theory and why so-called toy models, despite their superficially playful character, can sometimes lead to certain quantitative predictions.
Professor Martin Hairer is Professor of Pure Mathematics at Imperial College London. He was awarded the Fields Medal in 2014.
Please email @email to register.
The lecture will be available on our Oxford Mathematics YouTube Channel on 22 September at 5 pm.
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
16:00
Rigidity of Banach *-algebras
Abstract
It is well known that two non-isomorphic groups (groupoids) can produce isomorphic C*-algebras. That is, group (groupoid) C*-algebras are not rigid. This is not the case of the L^p-operator algebras associated to locally compact groups ( effective groupoids) where the isomorphic class of the group (groupoid) uniquely determines up to isometric isomorphism the associated L^p-algebras. Thus, L^p-operator algebras are rigid. Liao and Yu introduced a class of Banach *-algebras associated to locally compact groups. We will see that this family of Banach *-algebras are also rigid.
16:00
The noncommutative factor theorem for higher rank lattices
Abstract
In this talk, I will present a noncommutative analogue of Margulis’ factor theorem for higher rank lattices. More precisely, I will give a complete description of all intermediate von Neumann subalgebras sitting between the von Neumann algebra of the lattice and the von Neumann algebra of the action of the lattice on the Furstenberg-Poisson boundary. As an application, we infer that the rank of the semisimple Lie group is an invariant of the pair of von Neumann algebras. I will explain the relevance of this result regarding Connes’ rigidity conjecture.
16:00
Chaotic tracial dynamics
Abstract
The classification by K-theory and traces of the category of simple, separable, nuclear, Z-stable C*-algebras satisfying the UCT is an extraordinary feat of mathematics. What's more, it provides powerful machinery for the analysis of the internal structure of these regular C*-algebras. In this talk, I will explain one such application of classification: In the subclass of classifiable C*-algebras consisting of those for which the simplex of tracial states is nonempty, with extremal boundary that is compact and has the structure of a connected topological manifold, automorphisms can be shown to be generically tracially chaotic. Using similar ideas, I will also show how certain stably projectionless C*-algebras can be described as crossed products.