Search for neutrino emission from cores of active galactic nuclei
Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alameddine, J Alispach, C Alves, A Amin, N Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X V., A Barbano, A Barwick, S Bastian, B Basu, V Baur, S Bay, R Beatty, J Becker, K Tjus, J Bellenghi, C BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Brinson, B Bron, S Brostean-Kaiser, J Browne, S Burgman, A Burley, R Busse, R Campana, M Carnie-Bronca, E Chen, C Chen, Z Chirkin, D Choi, K Clark, B Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dappen, C Dave, P De Clercq, C DeLaunay, J López, D Dembinski, H Deoskar, K Desai, A Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Diaz, A Díaz-Vélez, J Dittmer, M Dujmovic, H Dunkman, M DuVernois, M Dvorak, E Ehrhardt, T Eller, P Engel, R Erpenbeck, H Evans, J Evenson, P Fan, K Fazely, A Fedynitch, A Feigl, N Fiedlschuster, S Fienberg, A Filimonov, K Finley, C Fischer, L Fox, D Franckowiak, A Friedman, E Fritz, A Fürst, P Gaisser, T Gallagher, J Ganster, E Garcia, A Garrappa, S Gerhardt, L Ghadimi, A Glaser, C Glauch, T Glüsenkamp, T Gonzalez, J Goswami, S Grant, D Grégoire, T Griswold, S Günther, C Gutjahr, P Haack, C Hallgren, A Halliday, R Halve, L Halzen, F Minh, M Hanson, K Hardin, J Harnisch, A Haungs, A Hebecker, D Helbing, K Henningsen, F Hettinger, E Hickford, S Hignight, J Hill, C Hill, G Hoffman, K Hoffmann, R Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Huber, T Hultqvist, K Hünnefeld, M Hussain, R Hymon, K In, S Iovine, N Ishihara, A Jansson, M Japaridze, G Jeong, M Jin, M Jones, B Kang, D Kang, W Kang, X Kappes, A Kappesser, D Kardum, L Karg, T Karl, M Karle, A Katz, U Kauer, M Kellermann, M Kelley, J Kheirandish, A Kin, K Kintscher, T Kiryluk, J Klein, S Koirala, R Kolanoski, H Kontrimas, T Köpke, L Kopper, C Kopper, S Koskinen, D Koundal, P Kovacevich, M Kowalski, M Kozynets, T Kun, E Kurahashi, N Lad, N Gualda, C Lanfranchi, J Larson, M Lauber, F Lazar, J Lee, J Leonard, K Leszczyńska, A Li, Y Lincetto, M Liu, Q Liubarska, M Lohfink, E Mariscal, C Lu, L Lucarelli, F Ludwig, A Luszczak, W Lyu, Y Y., W Madsen, J Mahn, K Makino, Y Mancina, S Mariş, I Martinez-Soler, I Maruyama, R Mase, K McElroy, T McNally, F Mead, J Meagher, K Mechbal, S Medina, A Meier, M Meighen-Berger, S Micallef, J Mockler, D Montaruli, T Moore, R Morse, R Moulai, M Naab, R Nagai, R Naumann, U Necker, J Nguyễn, L Niederhausen, H Nisa, M Nowicki, S Pollmann, A Oehler, M Oeyen, B Olivas, A O’Sullivan, E Pandya, H Pankova, D Park, N Parker, G Paudel, E Paul, L de los Heros, C Peters, L Peterson, J Philippen, S Pieper, S Pittermann, M Pizzuto, A Plum, M Popovych, Y Porcelli, A Rodriguez, M Price, P Pries, B Przybylski, G Raab, C Raissi, A Rameez, M Rawlins, K Rea, I Rehman, A Reichherzer, P Reimann, R Renzi, G Resconi, E Reusch, S Rhode, W Richman, M Riedel, B Roberts, E Robertson, S Roellinghoff, G Rongen, M Rott, C Ruhe, T Ryckbosch, D Cantu, D Safa, I Saffer, J Herrera, S Sandrock, A Sandroos, J Santander, M Sarkar, S Satalecka, K Schaufel, M Schieler, H Schindler, S Schmidt, T Schneider, A Schneider, J Schröder, F Schumacher, L Schwefer, G Sclafani, S Seckel, D Seunarine, S Sharma, A Shefali, S Silva, M Skrzypek, B Smithers, B Snihur, R Soedingrekso, J Soldin, D Spannfellner, C Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stein, R Stettner, J Steuer, A Stezelberger, T Stürwald, T Stuttard, T Sullivan, G Taboada, I Ter-Antonyan, S Tilav, S Tischbein, F Tollefson, K Tönnis, C Toscano, S Tosi, D Trettin, A Tselengidou, M Tung, C Turcati, A Turcotte, R Turley, C Twagirayezu, J Ty, B Elorrieta, M Valtonen-Mattila, N Vandenbroucke, J van Eijndhoven, N Vannerom, D van Santen, J Verpoest, S Walck, C Watson, T Weaver, C Weigel, P Weindl, A Weiss, M Weldert, J Wendt, C Werthebach, J Weyrauch, M Whitehorn, N Wiebusch, C Williams, D Wolf, M Woschnagg, K Wrede, G Wulff, J Xu, X Yanez, J Yoshida, S Yu, S Yuan, T Zhang, Z Zhelnin, P Physical Review D volume 106 issue 2 022005 (15 Jul 2022)
Dark matter neutrino scattering in the galactic centre with IceCube
McMullen, A Vincent, A Arguëlles, C Schneider, A Journal of Instrumentation volume 16 issue 08 c08001 (01 Aug 2021)
Erratum: Constraints on Ultrahigh-Energy Cosmic-Ray Sources from a Search for Neutrinos Above 10 PeV with IceCube [Phys. Rev. Lett. 117, 241101 (2016)].
Aartsen, M Anonymous Physical review letters volume 119 issue 25 259902 (21 Dec 2017)
Starting track events in IceCube
Silva, M Journal of Instrumentation volume 16 issue 9 c09015 (01 Sep 2021)
Astrophysical neutrino source searches with IceCube starting track events
Mancina, S Silva, M Journal of Instrumentation volume 16 issue 9 c09024 (01 Sep 2021)
Search for dark matter from the centre of the Earth with 8 years of IceCube data
Renzi, G Journal of Instrumentation volume 16 issue 11 c11012 (01 Nov 2021)
Astrophysical neutrinos: IceCube highlights
Tosi, D Collaboration, I Nuclear and Particle Physics Proceedings volume 291 167-174 (Oct 2017)
Existence and uniqueness of global weak solutions to strain-limiting viscoelasticity with Dirichlet boundary data
Bulicek, M Patel, V Suli, E Sengul, Y SIAM Journal on Mathematical Analysis volume 54 issue 6 6186 (21 Nov 2022)
Thu, 26 Jan 2023
14:00
L3

Learning State-Space Models of Dynamical Systems from Data

Peter Benner
(MPI Magdeburg)
Abstract

Learning dynamical models from data plays a vital role in engineering design, optimization, and predictions. Building models describing the dynamics of complex processes (e.g., weather dynamics, reactive flows, brain/neural activity, etc.) using empirical knowledge or first principles is frequently onerous or infeasible. Therefore, system identification has evolved as a scientific discipline for this task since the 1960ies. Due to the obvious similarity of approximating unknown functions by artificial neural networks, system identification was an early adopter of machine learning methods. In the first part of the talk, we will review the development in this area until now.

For complex systems, identifying the full dynamics using system identification may still lead to high-dimensional models. For engineering tasks like optimization and control synthesis as well as in the context of digital twins, such learned models might still be computationally too challenging in the aforementioned multi-query scenarios. Therefore, it is desirable to identify compact approximate models from the available data. In the second part of this talk, we will therefore exploit that the dynamics of high-fidelity models often evolve in lowdimensional manifolds. We will discuss approaches learning representations of these lowdimensional manifolds using several ideas, including the lifting principle and autoencoders. In particular, we will focus on learning state-space representations that can be used in classical tools for computational engineering. Several numerical examples will illustrate the performance and limitations of the suggested approaches.

Image of MAT question

"Somehow, two hours of maths has become complete chaos."

"This is genuinely fun."

"How likely is it that we’ll be allowed to bring in a Samsung smart fridge to the MAT?"

Just some of the feedback from the first episode of our MAT (Mathematics Admissions Test) 2022 Livestream with MC James Munro.

Subscribe to