14:00
Recoloring version of Hadwiger's conjecture
Abstract
Las Vergnas and Meyniel conjectured in 1981 that all the $t$-colorings of a $K_t$-minor free graph are Kempe equivalent. This conjecture can be seen as a reconfiguration counterpoint to Hadwiger's conjecture, although it neither implies it or is implied by it. We prove that for all positive $\epsilon$, for all large enough $t$, there exists a graph with no $K_{(2/3 + \epsilon)t}$ minor whose $t$-colorings are not all Kempe equivalent, thereby strongly disproving this conjecture, along with two other conjectures of the same paper.
Signed barcodes for multiparameter persistence
Abstract
Moving from persistent homology in one parameter to multiparameter persistence comes at a significant increase in complexity. In particular, the notion of a barcode does not generalize straightforwardly. However, in this talk, I will show how it is possible to assign a unique barcode to a multiparameter persistence module if one is willing to take Z-linear combinations of intervals. The theoretical discussion will be complemented by numerical experiments. This is joint work with Steffen Oppermann and Steve Oudot.