Tue, 27 Apr 2021

15:30 - 16:30
Virtual

The two-periodic Aztec diamond and matrix valued orthogonality

Arno Kuijlaars
(KU Leuven)
Further Information

Meeting links will be sent to members of our mailing list (https://lists.maths.ox.ac.uk/mailman/listinfo/random-matrix-theory-anno…) in our weekly announcement on Monday.

Abstract

I will discuss how  polynomials with a non-hermitian orthogonality on a contour in the complex plane arise in certain random tiling problems. In the case of periodic weightings the orthogonality is matrixvalued.

In work with Maurice Duits (KTH Stockholm) the Riemann-Hilbert problem for matrix valued orthogonal polynomials was used to obtain asymptotics for domino tilings of the two-periodic Aztec diamond. This model is remarkable since it gives rise to a gaseous phase, in addition to the more common solid and liquid phases.

Fri, 04 Jun 2021

15:00 - 16:00
Virtual

Topological and geometric analysis of graphs - Yusu Wang

Yusu Wang
(University of San Diego)
Abstract

In recent years, topological and geometric data analysis (TGDA) has emerged as a new and promising field for processing, analyzing and understanding complex data. Indeed, geometry and topology form natural platforms for data analysis, with geometry describing the ''shape'' behind data; and topology characterizing / summarizing both the domain where data are sampled from, as well as functions and maps associated with them. In this talk, I will show how topological (and geometric ideas) can be used to analyze graph data, which occurs ubiquitously across science and engineering. Graphs could be geometric in nature, such as road networks in GIS, or relational and abstract. I will particularly focus on the reconstruction of hidden geometric graphs from noisy data, as well as graph matching and classification. I will discuss the motivating applications, algorithm development, and theoretical guarantees for these methods. Through these topics, I aim to illustrate the important role that topological and geometric ideas can play in data analysis.

Fri, 28 May 2021

15:00 - 16:00
Virtual

The applications and algorithms of correspondence modules - Haibin Hang

Haibin Hang
(University of Delaware)
Abstract

 In this work we systematically introduce relations to topological data analysis (TDA) in the categories of sets, simplicial complexes and vector spaces to characterize and study the general dynamical behaviors in a consistent way. The proposed framework not only offers new insights to the classical TDA methodologies, but also motivates new approaches to interesting applications of TDA in dynamical metric spaces, dynamical coverings, etc. The associated algorithm which produces barcode invariants, and relations in more general categories will also be discussed.

Fri, 21 May 2021

15:00 - 16:00
Virtual

Persistent Laplacians: properties, algorithms and implications - Zhengchao Wan

Zhengchao Wan
(Ohio State University)
Abstract

In this work we present a thorough study of the theoretical properties and devise efficient algorithms for the persistent Laplacian, an extension of the standard combinatorial Laplacian to the setting of simplicial pairs: pairs of simplicial complexes related by an inclusion, which was recently introduced by Wang, Nguyen, and Wei. 

In analogy with the non-persistent case, we establish that the nullity of the q-th persistent Laplacian equals the q-th persistent Betti number of any given simplicial pair which provides an interesting connection between spectral graph theory and TDA. 

We further exhibit a novel relationship between the persistent Laplacian and the notion of Schur complement of a matrix. This relation permits us to uncover a link with the notion of effective resistance from network circuit theory and leads to a persistent version of the Cheeger inequality.

This relationship also leads to a novel and fundamentally different algorithm for computing the persistent Betti number for a pair of simplicial complexes which can be significantly more efficient than standard algorithms. 

Fri, 07 May 2021

15:00 - 16:00
Virtual

Investigating Collective Behaviour and Phase Transitions in Active Matter using TDA - Dhananjay Bhaskar

Dhananjay Bhaskar
(Brown University)
Abstract

Active matter systems, ranging from liquid crystals to populations of cells and animals, exhibit complex collective behavior characterized by pattern formation and dynamic phase transitions. However, quantitative analysis of these systems is challenging, especially for heterogeneous populations of varying sizes, and typically requires expertise in formulating problem-specific order parameters. I will describe an alternative approach, using a combination of topological data analysis and machine learning, to investigate emergent behaviors in self-organizing populations of interacting discrete agents.

Fri, 30 Apr 2021

15:00 - 16:00
Virtual

Sketching Persistence Diagrams, Don Sheehy

Don Sheehy
(North Carolina State)
Further Information

Don Sheehy is an Associate Professor of Computer Science at North Carolina State University.  He received his B.S.E. from Princeton University and his Ph.D. in Computer Science from Carnegie Mellon University.   He spent two years as a postdoc at Inria Saclay in France.  His research is in algorithms and data structures in computational geometry and topological data analysis.  

Abstract

Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams -- a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation.

Subscribe to