Several well-known formulas involving reflection groups of finite-dimensional algebraic systems break down in infinite dimensions, but there is often a predictable way to correct them. Oxford Mathematician Thomas Oliver talks about his research getting to grips with what structures underlie the mysterious correction process.

Fri, 23 Oct 2020

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Ellen Luckins, Ambrose Yim, Victor Wang, Christoph Hoeppke
(Mathematical Institute)
Fri, 19 Jun 2020

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Rahil Sachak-Patwa, Thomas Babb, Huining Yang, Joel Dyer
(Mathematical Institute)
Further Information

The Group Meeting will be held virtually unless the Covid 19 lockdown is over in which case the location will be L2.

Fri, 29 May 2020

11:45 - 13:15
Virtual

InFoMM CDT Group Meeting

Rodrigo Leal Cervantes, Isabelle Scott, Matthew Shirley, Meredith Ellis
(Mathematical Institute)
Further Information

The Group Meeting will be held virtually unless the Covid 19 lockdown is over in which case the location will be L3. 

Fri, 19 Jun 2020

14:00 - 15:00
Virtual

Multi-scale modelling to predict strain in the femoral neck during level walking

Dr Xinshan (Shannon) Li
(Department of Mechanical Engineering University of Sheffield)
Abstract

Femoral neck response to physiological loading during level walking can be better understood, if personalized muscle and bone anatomy is considered. Finite element (FE) models of in vivo cadaveric bones combined with gait data from body-matched volunteers were used in the earlier studies, which could introduce errors in the results. The aim of the current study is to report the first fully personalized multiscale model to investigate the strains predicted at the femoral neck during a full gait cycle. CT-based Finite element models (CT/FE) of the right femur were developed following a validated framework. Muscle forces estimated by the musculoskeletal model were applied to the CT/FE model. For most of the cases, two overall peaks were predicted around 15% and 50% of the gait. Maximum strains were predicted at the superior neck region in the model. Anatomical muscle variations seem to affect femur response leading to considerable variations among individuals, both in term of the strains level and the trend at the femoral neck.
 

Subscribe to