Tue, 25 Nov 2014
15:45
L4

Complex Geometry and the Hele-Shaw flow

Julius Ross
(Cambridge)
Abstract

The goal of this talk is to discuss a link between the Homogeneous Monge Ampere Equation in complex geometry, and a certain flow in the plane motivated by some fluid mechanics.   After discussing and motivating the Dirichlet problem for this equation I will focus to what is probably the first non-trivial case that one can consider, and prove that it is possible to understand regularity of the solution in terms of what is known as the Hele-Shaw flow in the plane. As such we get, essentially explicit, examples of boundary data for which there is no regular solution, contrary to previous expectation.  All of this is joint work with David Witt Nystrom.

Tue, 18 Nov 2014
14:00
L4

The Donaldson-Thomas theory of K3xE and the Igusa cusp form

Jim Bryan
(University of British Columbia)
Abstract

Donaldson-Thomas invariants are fundamental deformation invariants of Calabi-Yau threefolds. We describe a recent conjecture of Oberdieck and Pandharipande which predicts that the (three variable) generating function for the Donaldson-Thomas invariants of K3xE is given by the reciprocal of the Igusa cusp form of weight 10. For each fixed K3 surface of genus g, the conjecture predicts that the corresponding (two variable) generating function is given by a particular meromorphic Jacobi form. We prove the conjecture for K3 surfaces of genus 0 and genus 1. Our computation uses a new technique which mixes motivic and toric methods.

Thu, 13 Nov 2014
14:00
L4

The topology of rationally and polynomially convex domains

Kai Cieliebak
(Augsburg)
Abstract

Rationally and polynomially convex domains in ${\mathbb C}^n$ are fundamental objects of study in the theory of functions of several complex variables. After defining and illustrating these notions, I will explain joint work with Y.Eliashberg giving a complete characterization of the possible topologies of such domains in complex dimension at least three. The proofs are based on recent progress in symplectic topology, most notably the h-principles for loose Legendrian knots and Lagrangian caps.

Tue, 04 Nov 2014
15:45
L4

Cobordisms between tangles

Akram Alishahi
(Bonn)
Abstract

 In a previous work, we introduced a refinement of Juhasz’s sutured Floer homology, and constructed a minus theory for sutured manifolds, called sutured Floer chain complex. In this talk, we introduce a new description of sutured manifolds as “tangles” and describe a notion of cobordism between them. Using this construction, we define a cobordism map between the corresponding sutured Floer chain complexes. We also discuss some possible applications. This is a joint work with Eaman Eftekhary.

Tue, 28 Oct 2014

15:45 - 16:45
L4

Infinitely many monotone Lagrangian Tori in CP^2

Renato Vianna
(Cambridge)
Abstract
In previous work, we constructed an exotic monotone Lagrangian torus in $\mathbb{CP}^2$ (not Hamiltonian isotopic to the known Clifford and Chekanov tori) using techniques motivated by mirror symmetry. We named it $T(1,4,25)$ because, when following a degeneration of $\mathbb{CP}^2$ to the weighted projective space $\mathbb{CP}(1,4,25)$, it degenerates to the central fibre of the moment map for the standard torus action on $\mathbb{CP}(1,4,25)$. Related to each degeneration from $\mathbb{CP}^2$ to $\mathbb{CP}(a^2,b^2,c^2)$, for $(a,b,c)$ a Markov triple -- $a^2 + b^2 + c^2 = 3abc$ -- there is a monotone Lagrangian torus, which we call $T(a^2,b^2,c^2)$.  We employ techniques from symplectic field theory to prove that no two of them are Hamiltonian isotopic to each other.
Tue, 11 Nov 2014

12:00 - 13:00
L5

SYM amplitudes from BRST symmetry

Oliver Schlotterer
(AEI Golm)
Abstract
This talk describes a method to compute supersymmetric tree amplitudes and loop integrands in ten-dimensional super Yang-Mills theory. It relies on the constructive interplay between their cubic graph organization and BRST invariance of the underlying pure spinor superspace description. After a general introduction to this kind of superspace, we discuss a canonical set of multiparticle building blocks which represent tree level subdiagrams and are guided by their BRST transformation. These building blocks are shown to yield a compact solution for tree level amplitudes, and the applicability of the BRST approach to loop integrands is exemplified through recent examples at one-loop.
Subscribe to