Mon, 16 Jan 2017

14:15 - 15:15
L4

Invariants and moduli revisited: the case of a single root

Brent Doran
Abstract

What is the correct combinatorial object to encode a linear representation?  Many shadows of this problem have been studied:moment polytopes, Duistermaat-Heckman measures, Okounkov bodies.  We suggest that already in very simple cases these miss a crucial feature.  The ring theory, as opposed to just the linear algebra, of the group action on the coordinate ring, depends on some non-trivial lattice geometry and an associated filtration.  Some striking similarities to, and key differences from, the theory of toric varieties ensue.  Finite and non-finite generation phenomena emerge naturally.  We discuss motivations from, and applications to, questions in the effective geometry of moduli of curves.

 

Mon, 06 Feb 2017

14:15 - 15:15
L4

Monopoles and the Sen Conjecture

Michael Singer
(University College London)
Abstract

 The Sen conjecture, made in 1994, makes precise predictions about the existence of L^2 harmonic forms on the monopole moduli spaces. For each positive integer k, the moduli space M_k of monopoles of charge k is a non-compact smooth manifold of dimension 4k, carrying a natural hyperkaehler metric.  Thus studying Sen’s conjectures requires a good understanding of the asymptotic structure of M_k and its metric.  This is a challenging analytical problem, because of the non-compactness of M_k and because its asymptotic structure is at least as complicated as the partitions of k.  For k=2, the metric was written down explicitly by Atiyah and Hitchin, and partial results are known in other cases.  In this talk, I shall introduce the main characters in this story and describe recent work aimed at proving Sen’s conjecture.

Tue, 24 Jan 2017
14:30
L5

On the spectral problem for trivariate functions

Behnam Hashemi
(Mathematical Institute)
Abstract


Using a variational approach applied to generalized Rayleigh functionals, we extend the concepts of singular values and singular functions to trivariate functions defined on a rectangular parallelepiped. We also consider eigenvalues and eigenfunctions for trivariate functions whose domain is a cube. For a general finite-rank trivariate function, we describe an algorithm for computing the canonical polyadic (CP) decomposition, provided that the CP factors are linearly independent in two variables. All these notions are computed using Chebfun. Application in finding the best rank-1 approximation of trivariate functions is investigated. We also prove that if the function is analytic and two-way orthogonally decomposable (odeco), then the CP values decay geometrically, and optimal finite-rank approximants converge at the same rate.
 

Data-driven and Model-based Verification via Bayesian Identification and Reachability Analysis
Abate, A Haesaert, S Van den Hof, P Automatica (02 Mar 2017)
Safety verification of output feedback controllers for nonlinear systems
Abate, A Lesser, K 15th European Control Conference - ECC16 (01 Jan 2017)
Synthesis of formal controllers for HVAC systems
Abate, A Holub, O Zamani, M ECC16 (Jun 2016)
Experiment design for formal verification via stochastic optimal control
Abate, A Haesaert, S Van den Hof, P 15th European Control Conference - ECC16 427-432 (01 Jan 2017)
Multi-objective optimal control with safety as a priority
Abate, A Lesser, K 8th ACM/IEEE International Conference on Cyber-Physical Systems - ICCPS17 (01 Apr 2017)
Subscribe to