The Complexity of Boundedness for Guarded Logics
Benedikt, M Cate, B Colcombet, T Boom, M 293-304 (01 Jul 2015)
Backward Reachability of Autonomous Max-Plus-Linear Systems
Adzkiya, D De Schutter, B Abate, A IFAC Proceedings Volumes volume 47 issue 2 117-122 (2014)
Backward Reachability of Autonomous Max-Plus-Linear Systems
Adzkiya, D De Schutter, B Abate, A IFAC-PapersOnLine volume 47 issue 2 117-122 (2014)
Critical branching Brownian motion with absorption: Particle configurations
Berestycki, J Berestycki, N Schweinsberg, J Annales de l Institut Henri Poincaré Probabilités et Statistiques volume 51 issue 4 1215-1250 (01 Nov 2015)
Generating Plans From Proofs
Benedikt, M Tsamoura, E ten Cate, B ACM Transactions on Database Systems (01 Feb 2016)
Thu, 04 Feb 2016
15:00
L4

Basic aspects of n-homological algebra

Peter Jorgensen
(Newcastle)
Abstract

Abstract: n-homological algebra was initiated by Iyama
via his notion of n-cluster tilting subcategories.
It was turned into an abstract theory by the definition
of n-abelian categories (Jasso) and (n+2)-angulated categories
(Geiss-Keller-Oppermann).
The talk explains some elementary aspects of these notions.
We also consider the special case of an n-representation finite algebra.
Such an algebra gives rise to an n-abelian
category which can be "derived" to an (n+2)-angulated category.
This case is particularly nice because it is
analogous to the classic relationship between
the module category and the derived category of a
hereditary algebra of finite representation type.
 

Mon, 15 Feb 2016
15:45
L6

The Curved Cartan Complex

Constantin Teleman
(Oxford)
Abstract

  
The Cartan model computes the equivariant cohomology of a smooth manifold X with 
differentiable action of a compact Lie group G, from the invariant functions on 
the Lie algebra with values in differential forms and a deformation of the de Rham 
differential. Before extracting invariants, the Cartan differential does not square 
to zero. Unrecognised was the fact that the full complex is a curved algebra, 
computing the quotient by G of the algebra of differential forms on X. This 
generates, for example, a gauged version of string topology. Another instance of 
the construction, applied to deformation quantisation of symplectic manifolds, 
gives the BRST construction of the symplectic quotient. Finally, the theory for a 
X point with an additional quadratic curving computes the representation category 
of the compact group G.

Tue, 26 Jan 2016

12:00 - 13:15
L4

Elliptic polylogarithms and string amplitudes

Dr Erik Panzer
(Oxford)
Abstract
Recent results showed that the low energy expansion of closed superstring amplitudes can be expressed in terms of

single-valued multiple elliptic polylogarithms. I will explain how these functions may be defined as iterated integrals on the torus and

sketch how they arise from Feynman integrals.
Wed, 20 Jan 2016

11:00 - 12:30
S2.37

Bieberbach's Theorems

Robert Kropholler
(Oxford)
Abstract
I will go through a proof of Bieberbach's theorems proving that a group acting cocompactly on Euclidean n-space has a subgroup consisting of n independent translations. Time permitting I will also prove that there is a bound on the number of such groups for each dimension n. I will assume very little requiring only a small amount of group theory and linear algebra for the proofs. 
Subscribe to