Axion Cosmology
Abstract
Axions are ubiquitous in string theory compactifications. They are
pseudo goldstone bosons and can be extremely light, contributing to
the dark sector energy density in the present-day universe. The
mass defines a characteristic length scale. For 1e-33 eV<m< 1e-20
eV this length scale is cosmological and axions display novel
effects in observables. The magnitude of these effects is set by
the axion relic density. The axion relic density and initial
perturbations are established in the early universe before, during,
or after inflation (or indeed independently from it). Constraints
on these phenomena can probe physics at or beyond the GUT scale. I
will present multiple probes as constraints of axions: the Planck
temperature power spectrum, the WiggleZ galaxy redshift survey,
Hubble ultra deep field, the epoch of reionisation as measured by
cmb polarisation, cmb b-modes and primordial gravitational waves,
and the density profiles of dwarf spheroidal galaxies. Together
these probe the entire 13 orders of magnitude in axion mass where
axions are distinct from CDM in cosmology, and make non-trivial
statements about inflation and axions in the string landscape. The
observations hint that axions in the range 1e-22 eV<m<1e-20 eV may
play an interesting role in structure formation, and evidence for
this could be found in the future surveys AdvACT (2015), JWST, and
Euclid (>2020). If inflationary B-modes are observed, a wide range
of axion models including the anthropic window QCD axion are
excluded unless the theory of inflation is modified. I will also
comment briefly on direct detection of QCD axions.
On the mod p reduction of Fredholm determinants for modular forms
Abstract
Fix a prime $p$. In this talk, we will discuss the $p$-adic properties of the *coefficients* of the characteristic power series of $U_{p}$ acting on spaces of overconvergent $p$-adic modular forms. These coefficients are, by a theorem of Coleman, power series in the weight variable over $Z_{p}$. Our first goal will be to show that in tame level one, the simplest case, every coefficient is non-zero mod $p$ and then to give some idea of the (finitely many) roots of each coefficient. The second goal will be to explain how it the previous result fails in higher levels, along with possible salvages. This will include revisiting the tame level one case. The progress we've made has applications, and lends understanding, to recent work being made elsewhere on the geometric structure of the eigencurve "near its boundary". This is joint work with Rob Pollack.
Regularity for double phase variational integrals
Abstract
Those mentioned in the title are integral functionals of the Calculus of Variations characterized by the fact of having an integrand switching between two different kinds of degeneracies, dictated by a modulating coefficient. They have introduced by Zhikov in the context of Homogenization and to give new examples of the related Lavrentiev phenomenon. In this talk I will present some recent results aimed at drawing a complete regularity theory for minima.