Mon, 21 Oct 2024
16:30
L4

Thomas-Fermi type models of external charge screening in graphene

Vitaly Moroz
(Swansea University)
Abstract

We propose a density functional theory of Thomas-Fermi-(von Weizsacker) type to describe the response of a single layer of graphene to a charge some distance away from the layer. We formulate a variational setting in which the proposed energy functional admits minimizers. We further provide conditions under which those minimizers are unique. The associated Euler-Lagrange equation for the charge density is also obtained, and uniqueness, regularity and decay of the minimizers are proved under general conditions. For a class of special potentials, we also establish a precise universal asymptotic decay rate, as well as an exact charge cancellation by the graphene sheet. In addition, we discuss the existence of nodal minimizers which leads to multiple local minimizers in the TFW model. This is a joint work with Cyrill Muratov (University of Pisa).

A class of memristive Hénon maps
Wang, Z Li, C Li, Y Moroz, I Fu, H Physica Scripta volume 99 issue 10 105227 (01 Oct 2024)
Tue, 17 Sep 2024
13:00
L1

TBA

Vija Balasubramanian
(UPenn)
Tue, 15 Oct 2024
13:00
L2

Mirror Symmetry and Level-rank Duality for 3d N=4 Rank 0 SCFTs

Niklas Garner
(Oxford )
Abstract

Three-dimensional QFTs with 8 supercharges (N=4 supersymmetry) are a rich playground rife with connections to mathematics. For example, they admit two topological twists and furnish a three-dimensional analogue of the famous mirror symmetry of two-dimensional N=(2,2) QFTs, creatively called 3d mirror symmetry, that exchanges these twists. Recently, there has been increased interest in so-called rank 0 theories that typically do not admit Lagrangian descriptions with manifest N=4 supersymmetry, but their topological twists are expected to realize finite, semisimple TQFTs which are amenable to familiar descriptions in terms of, e.g., modular tensor categories and/or rational vertex operator algebras. In this talk, based off of joint work (arXiv:2406.00138) with Thomas Creutzig and Heeyeon Kim, I will introduce two families of rank 0 theories exchanged by 3d mirror symmetry and various mathematical conjectures stemming from our analysis thereof.

Tue, 19 Nov 2024
13:00
L2

Symmetry topological field theory and generalised Kramers–Wannier dualities

Clement Delcamp
(IHES)
Abstract

A modern perspective on symmetry in quantum theories identifies the topological invariance of a symmetry operator within correlation functions as its defining property. Within this paradigm, a framework has emerged enabling a calculus of topological defects in terms of a higher-dimensional topological quantum field theory. In this seminar, I will discuss aspects of this construction for Euclidean lattice field theories. Exploiting this framework, I will present generalisations of the celebrated Kramers-Wannier duality of the Ising model, as combinations of gauging procedures and generalised Fourier transforms of the local weights encoding the dynamics. If time permits, I will discuss implications of this framework for the real-space renormalisation group flow of these theories.

Tue, 03 Dec 2024
16:00
L6

Large deviations of Selberg’s CLT: upper and lower bounds

Emma Bailey
(University of Bristol)
Abstract

Selberg’s CLT informs us that the logarithm of the Riemann zeta function evaluated on the critical line behaves as a complex Gaussian. It is natural, therefore, to study how far this Gaussianity persists. This talk will present conditional and unconditional results on atypically large values, and concerns work joint with Louis-Pierre Arguin and Asher Roberts.

Tue, 29 Oct 2024
16:00
L6

"Musical chairs": dynamical aspects of rank-one non-normal deformations.

Guillaume Dubach
(Ecole Polytechnique (CMLS))
Abstract

We will present some of the remarkable properties of eigenvalue trajectories for rank-one perturbations of random matrices, with an emphasis on two models of particular interest, namely weakly non-Hermitian and weakly non-unitary matrices. In both cases, precise estimates can be obtained for the critical timescale at which an outlier can be observed with high probability. We will outline the proofs of these results and highlight their significance in connection with quantum chaotic scattering. (Based on joint works with L. Erdös and J. Reker)

Thu, 28 Nov 2024

12:00 - 12:30
Lecture Room 6

​​​​​Preconditioners for Multicomponent Flows

Kars Knook
(University of Oxford)
Abstract

Multicomponent flows, i.e. mixtures, can be modeled effectively using the Onsager-Stefan-Maxwell (OSM) equations. The OSM equations can account for a wide variety of phenomena such as diffusive, convective, non-ideal mixing, thermal, pressure and electrochemical effects for steady and transient multicomponent flows. I will first introduce the general OSM framework and a finite element discretisation for multicomponent diffusion of ideal gasses. Then I will show two ways of preconditioning the multicomponent diffusion problem for various boundary conditions. Time permitting, I will also discuss how this can be extended to the non-ideal, thermal, and nonisobaric settings.

Thu, 21 Nov 2024

12:00 - 12:30
Lecture Room 6

Local convergence of adaptively regularized tensor methods

Karl Welzel
(University of Oxford)
Abstract

Tensor methods are methods for unconstrained continuous optimization that can incorporate derivative information of up to order p > 2 by computing a step based on the pth-order Taylor expansion at each iteration. The most important among them are regularization-based tensor methods which have been shown to have optimal worst-case iteration complexity of finding an approximate minimizer. Moreover, as one might expect, this worst-case complexity improves as p increases, highlighting the potential advantage of tensor methods. Still, the global complexity results only guarantee pessimistic sublinear rates, so it is natural to ask how local rates depend on the order of the Taylor expansion p. In the case of strongly convex functions and a fixed regularization parameter, the answer is given in a paper by Doikov and Nesterov from 2022: we get pth-order local convergence of function values and gradient norms. 
The value of the regularization parameter in their analysis depends on the Lipschitz constant of the pth derivative. Since this constant is not usually known in advance, adaptive regularization methods are more practical. We extend the local convergence results to locally strongly convex functions and fully adaptive methods. 
We discuss how for p > 2 it becomes crucial to select the "right" minimizer of the regularized local model in each iteration to ensure all iterations are eventually successful. Counterexamples show that in particular the global minimizer of the subproblem is not suitable in general. If the right minimizer is used, the pth-order local convergence is preserved, otherwise the rate stays superlinear but with an exponent arbitrarily close to one depending on the algorithm parameters.

Thu, 14 Nov 2024

12:00 - 12:30
Lecture Room 6

Structure-preserving discretisation for magneto-frictional equations in the Parker conjecture

Mingdong He
(University of Oxford)
Abstract

The Parker conjecture, which explores whether magnetic fields in perfectly conducting plasmas can develop tangential discontinuities during magnetic relaxation, remains an open question in astrophysics. Helicity conservation provides a topological barrier against topologically nontrivial initial data relaxing to a trivial solution. Preserving this mechanism is therefore crucial for numerical simulation.  

This paper presents an energy- and helicity-preserving finite element discretization for the magneto-frictional system for investigating the Parker conjecture. The algorithm enjoys a discrete version of the topological mechanism and a discrete Arnold inequality. 
We will also discuss extensions to domains with nontrivial topology.

This is joint work with Prof Patrick Farrell, Dr Kaibo Hu, and Boris Andrews

Subscribe to