16:00
C*-diagonals in the C*-algebras of non-principal twisted groupoids
Abstract
The reduced twisted C*-algebra A of an étale groupoid G has a canonical abelian subalgebra D: functions on G's unit space. When G has no non-trivial abelian subgroupoids (i.e., G is principal), then D is in fact maximal abelian. Remarkable work by Kumjian shows that the tuple (A,D) allows us to reconstruct the underlying groupoid G and its twist uniquely; this uses that D is not only masa but even what is called a C*-diagonal. In this talk, I show that twisted C*-algebras of non-principal groupoids can also have such C*-diagonal subalgebras, arising from non-trivial abelian subgroupoids, and I will discuss the reconstructed principal twisted groupoid of Kumjian for such pairs of algebras.
16:00
A unified approach for classifying simple nuclear C*-algebras
Abstract
The classification program of C*-algebras aims to classify simple, separable, nuclear C*-algebras by their K-theory and traces, inspired by analogous results obtained for von Neumann algebras. A landmark result in this project was obtained in 2015, building upon the work of numerous researchers over the past 20 years. More recently, Carrión, Gabe, Schafhauser, Tikuisis, and White developed a new, more abstract approach to classification, which connects more explicitly to the von Neumann algebraic classification results. In their paper, they carry out this approach in the stably finite setting, while for the purely infinite case, they refer to the original result obtained by Kirchberg and Phillips. In this talk, I provide an overview of how the new approach can be adapted to classify purely infinite C*-algebras, recovering the Kirchberg-Phillips classification by K-theory and obtaining Kirchberg's absorption theorems as corollaries of classification rather than (pivotal) ingredients. This is joint work with Jamie Gabe.
16:30
The Camassa—Holm Equation with Transport Noise
Abstract
The Camassa–Holm equation, which is nonlinear one-dimensional nonlinear PDE which is completely integrable and has applications in several areas, has received considerable attention. We will discuss recent work regarding the Camassa—Holm equation with transport noise, more precisely, the equation $u_t+uu_x+P_x+\sigma u_x \circ dW=0$ and $P-P_{xx}=u^2+u_x^2/2$. În particular, we will show existence of a weak, global, dissipative solution of the Cauchy initial-value problem on the torus. This is joint work with L. Galimberti (King’s College), K.H. Karlsen (Oslo), and P.H.C. Pang (NTNU/Oslo).