Thu, 16 May 2024
18:00
Stirling Square, London, SW1Y 5AD

Frontiers in Quantitative Finance Seminar: Turning tail risks into tail winds: using information geometry for portfolio optimisation

Julien Turc
(BNP Paribas)
Further Information

Registration for the talk is free but required.

Register here.

Abstract

A wide variety of solutions have been proposed in order to cope with the deficiencies of Modern Portfolio Theory. The ideal portfolio should optimise the investor’s expected utility. Robustness can be achieved by ensuring that the optimal portfolio does not diverge too much from a predetermined allocation. Information geometry proposes interesting and relatively simple ways to model divergence. These techniques can be applied to the risk budgeting framework in order to extend risk budgeting and to unify various classical approaches in a single, parametric framework. By switching from entropy to divergence functions, the entropy-based techniques that are useful for risk budgeting can be applied to more traditional, constrained portfolio allocation. Using these divergence functions opens new opportunities for portfolio risk managers. This presentation is based on two papers published by the BNP Paribas QIS Lab, `The properties of alpha risk parity’ (2022, Entropy) and `Turning tail risks into tailwinds’ (2020, The Journal of Portfolio Management).

On AdS$_4$ deformations of celestial symmetries
Bittleston, R Bogna, G Heuveline, S Kmec, A Mason, L Skinner, D (26 Mar 2024)
Amplitudes at Strong Coupling as Hyper-Kähler Scalars.
Frost, H Gürdoğan, Ö Mason, L Physical review letters volume 132 issue 15 151603 (12 Apr 2024)
Thu, 16 May 2024

17:00 - 18:00
L3

Some model theory of Quadratic Geometries

Charlotte Kestner
(Imperial College London)
Abstract
I will introduce the theories of orthogonal spaces and quadratic geometries over infinite fields, giving some background on Lie coordinatisable structures, and bilinear forms over infinite fields. I will then go on to explain the quantifier elimination for these structures, and discuss the axiomatisation of their pseudo-finite completions and model companions.  This is joint work in progress with Nick Ramsey.


 

When should lockdown be implemented? Devising cost-effective strategies for managing epidemics amid vaccine uncertainty
Doyle, N Cumming, F Thompson, R Tildesley, M (2024)
Mon, 27 May 2024
16:00
L2

Special values of L-functions

Aleksander Horawa
(University of Oxford)
Abstract

In 1735, Euler observed that $ζ(2) = 1 + \frac{1}{2²} + \frac{1}{3²} + ⋯ = \frac{π²}{6}$. This is related to the famous identity $ζ(−1) "=" 1 + 2 + 3 + ⋯ "=" \frac{−1}{12}$. In general, values of the Riemann zeta function at positive even integers are equal to rational numbers multiplied by a power of $π$. The values at positive odd integers are much more mysterious; for example, Apéry proved that $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ⋯$ is irrational, but we still don't know if $ζ(5) = 1 + \frac{1}{2⁵} + \frac{1}{3⁵} + ⋯$ is rational or not! In this talk, we will explain the arithmetic significance of these values, their generalizations to Dirichlet/Dedekind L−functions, and to L−functions of elliptic curves. We will also present a new formula for $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ...$ in terms of higher algebraic cycles which came out of an ongoing project with Lambert A'Campo.

Mon, 10 Jun 2024
16:00
L2

Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation

Manuel Hauke
(University of York)
Abstract

Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.

Mon, 13 May 2024
16:00
L2

Eigenvarieties and p-adic propagation of automorphy

Zachary Feng
(University of Oxford)
Abstract

Functoriality is a key feature in Langlands’ conjectured relationship between automorphic representations and Galois representations; it predicts that certain Galois representations are automorphic, i.e. should come from automorphic representations. We discuss the idea of $p$-adic propagation of automorphy, which seeks to establish the automorphy of everything in a “neighborhood” given the automorphy of something in that neighborhood. The “neighborhoods” that we consider will be the irreducible components of a $p$-adic analytic space called the eigenvariety, which parameterizes $p$-adic automorphic representations. This technique was introduced by Newton and Thorne in their proof of symmetric power functoriality, and can be adapted to investigate similar problems.

Testing structural balance theories in heterogeneous signed networks
Gallo, A Garlaschelli, D Lambiotte, R Saracco, F Squartini, T Communications Physics volume 7 issue 1 (13 May 2024)
On the Class $\mathcal{S}$ Origin of Spindle Solutions
Bomans, P Couzens, C (11 Apr 2024)
Subscribe to