17:00
Chance, luck, and ignorance: how to put our uncertainty into numbers - David Spiegelhalter
We all have to live with uncertainty about what is going to happen, what has happened, and why things turned out how they did. We attribute good and bad events as ‘due to chance’, label people as ‘lucky’, and (sometimes) admit our ignorance. I will show how to use the theory of probability to take apart all these ideas, and demonstrate how you can put numbers on your ignorance, and then measure how good those numbers are. Along the way we will look at three types of luck, and judge whether Derren Brown was lucky or unlucky when he was filmed flipping ten Heads in a row.
David Spiegelhalter was Cambridge University's first Winton Professor of the Public Understanding of Risk. He has appeared regularly on television and radio and is the author of several books, the latest of which is The Art of Uncertainty: How to Navigate Chance, Ignorance, Risk and Luck (Penguin, September 2024).
Please email @email to register to attend in person.
The lecture will be broadcast on the Oxford Mathematics YouTube Channel on Wednesday 11 December at 5-6pm and any time after (no need to register for the online version).
The Oxford Mathematics Public Lectures are generously supported by XTX Markets.
16:00
COW SEMINAR: Derived symmetries for crepant resolutions of hypersurfaces
Abstract
Given a singularity with a crepant resolution, a symmetry of the derived
category of coherent sheaves on the resolution may often be constructed
using the formalism of spherical functors. I will introduce this, and
new work (arXiv:2409.19555) on general constructions of such symmetries
for hypersurface singularities. This builds on previous results with
Segal, and is inspired by work of Bodzenta-Bondal.
14:30
COW SEMINAR: Homological mirror symmetry for K3 surfaces
Abstract
Joint work with Paul Hacking (U Mass Amherst). We first explain how to
prove homological mirror symmetry for a maximal normal crossing
Calabi-Yau surface Y with split mixed Hodge structure. This includes the
case when Y is a type III K3 surface, in which case this is used to
prove a conjecture of Lekili-Ueda. We then explain how to build on this
to prove an HMS statement for K3 surfaces. On the symplectic side, we
have any K3 surface (X, ω) with ω integral Kaehler; on the algebraic
side, we get a K3 surface Y with Picard rank 19. The talk will aim to be
accessible to audience members with a wide range of mirror symmetric
backgrounds.
13:00
COW SEMINAR: Ball quotients and moduli spaces
Abstract
A number of moduli problems are, via Hodge theory, closely related to
ball quotients. In this situation there is often a choice of possible
compactifications such as the GIT compactification´and its Kirwan
blow-up or the Baily-Borel compactification and the toroidal
compactificatikon. The relationship between these compactifications is
subtle and often geometrically interesting. In this talk I will discuss
several cases, including cubic surfaces and threefolds and
Deligne-Mostow varieties. This discussion links several areas such as
birational geometry, moduli spaces of pointed curves, modular forms and
derived geometry. This talk is based on joint work with S.
Casalaina-Martin, S. Grushevsky, S. Kondo, R. Laza and Y. Maeda.
Ramification Theory for Henselian Valued Fields
Abstract
Ramification theory serves the dual purpose of a diagnostic tool and treatment by helping us locate, measure, and treat the anomalous behavior of mathematical objects. In the classical setup, the degree of a finite Galois extension of "nice" fields splits up neatly into the product of two well-understood numbers (ramification index and inertia degree) that encode how the base field changes. In the general case, however, a third factor called the defect (or ramification deficiency) can pop up. The defect is a mysterious phenomenon and the main obstruction to several long-standing open problems, such as obtaining resolution of singularities. The primary reason is, roughly speaking, that the classical strategy of "objects become nicer after finitely many adjustments" fails when the defect is non-trivial. I will discuss my previous and ongoing work in ramification theory that allows us to understand and treat the defect.
16:00
Coherence in Dimension 2
Abstract
A group is coherent if all its finitely generated subgroups are finitely presented. Aside from some easy cases, it appears that coherence is a phenomenon that occurs only among groups of cohomological dimension 2. In this talk, we will give many examples of coherent and incoherent groups, discuss techniques to prove a group is coherent, and mention some open problems in the area.
12:00
Twisted eleven-dimensional supergravity and exceptional simple infinite dimensional super-Lie algebras
Abstract
I will describe a holomorphic-topological field theory in eleven-dimensions which captures a 1/16-BPS subsector of eleven-dimensional supergravity. Remarkably, asymptotic symmetries of the theory on flat space and on twisted versions of the AdS_4 x S^7 and AdS_7 x S^4 backgrounds recover three of the five infinite dimensional exceptional simple super-Lie algebras. I will discuss some applications of this fact, including character formulae for indices counting multigravitons and the contours of a program to holographically describe 1/16-BPS local operators in the 6d (2,0) SCFTs of type A_{N-1}. This talk is based on joint work, much in progress, with Fabian Hahner, Ingmar Saberi, and Brian Williams.
11:00
Quadratic and $p^\mathrm{th}$ variation of stochastic processes through Schauder expansions
Abstract