14:00
Hyperbolic intersection arrangements
Abstract
Consider a connected graph and choose a subset of its vertices. From this simple setup, Iyama and Wemyss define a collection of real hyperplanes known as an intersection arrangement, going on to classify all tilings of the affine plane that arise in this way. These "local" generalisations of Coxeter combinatorics also admit a nice wall-crossing structure via Dynkin involutions and longest Weyl elements. In this talk I give an analogous classification in the hyperbolic setting using the data of an "overextended" ADE diagram with three distinguished vertices. I then discuss ongoing work applying intersection arrangements to parametrise notions of stability conditions for preprojective algebras.
14:00
Probabilistic laws on groups
Abstract
Suppose a finite group satisfies the following property: If you take two random elements, then with probability bigger than 5/8 they commute. Then this group is commutative.
Starting from this well-known result, it is natural to ask: Do similar results hold for other laws (p-groups, nilpotent groups...)? Are there analogous results for infinite groups? Are there phenomena specific to the infinite setup?
We will survey known and new results in this area. New results are joint with Gideon Amir, Maria Gerasimova and Gady Kozma.
Nicola Pedreschi was a postdoc in Oxford Mathematics until the summer. But like several Oxford Mathematicians he is a musician, in Nicola's case in the band Eveline's Dust. So here is the lead single from their new album. This is their website.
13:00
Randomised Quantum Circuits for Practical Quantum Advantage
Abstract
Quantum computers are becoming a reality and current generations of machines are already well beyond the 50-qubit frontier. However, hardware imperfections still overwhelm these devices and it is generally believed the fault-tolerant, error-corrected systems will not be within reach in the near term: a single logical qubit needs to be encoded into potentially thousands of physical qubits which is prohibitive.
Due to limited resources, in the near term, hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage but these need to resort to quantum error mitigation techniques. I will explain the basic concepts and introduce hybrid quantum-classical protocols are the most promising candidates for achieving early quantum advantage. These have the potential to solve real-world problems---including optimisation or ground-state search---but they suffer from a large number of circuit repetitions required to extract information from the quantum state. I will detail a range of application areas of randomised quantum circuits, such as quantum algorithms, classical shadows, and quantum error mitigation introducing recent results that help lower the barrier for practical quantum advantage.