Modelling collective invasion with reaction–diffusion equations: when does domain curvature matter?
Pollacco, J Baker, R Maini, P Applied Mathematics Letters volume 160 (21 Sep 2024)
Fri, 22 Nov 2024
11:00
L3

Joint seminar with Mathematical Biology and Ecology Seminar: Bifurcations, pattern formation and multi-stability in non-local models of interacting species

Dr Valeria Giunta
(Dept. of Maths, Swansea University)
Abstract

Understanding the mechanisms behind the spatial distribution, self-organisation and aggregation of organisms is a central issue in both ecology and cell biology. Since self-organisation at the population level is the cumulative effect of behaviours at the individual level, it requires a mathematical approach to be elucidated.
In nature, every individual, be it a cell or an animal, inspects its territory before moving. The process of acquiring information from the environment is typically non-local, i.e. individuals have the ability to inspect a portion of their territory. In recent years, a growing body of empirical research has shown that non-locality is a key aspect of movement processes, while mathematical models incorporating non-local interactions have received increasing attention for their ability to accurately describe how interactions between individuals and their environment can affect their movement, reproduction rate and well-being. In this talk, I will present a study of a class of advection-diffusion equations that model population movements generated by non-local species interactions. Using a combination of analytical and numerical tools, I will show that these models support a wide variety of spatio-temporal patterns that are able to reproduce segregation, aggregation and time-periodic behaviours commonly observed in real systems. I will also show the existence of parameter regions where multiple stable solutions coexist and hysteresis phenomena.
Overall, I will describe various methods for analysing bifurcations and pattern formation properties of these models, which represent an essential mathematical tool for addressing fundamental questions about the many aggregation phenomena observed in nature.

Constructing conditional symmetry in a chaotic map
Moroz, I Nonlinear Dynamics volume 113 issue 4 3857-3868 (21 Oct 2024)
The Women in Geometry and Number Theory scheme is a deferred studentship, available to women who are considering the MSc in Mathematical Sciences in Oxford and a PhD in Geometry and Number Theory.
Joint calibration of local volatility models with stochastic interest rates using semimartingale optimal transport
Joseph, B Obloj, J Quantitative Finance (22 Oct 2024)
Fri, 20 Sep 2024

14:00 - 15:00
TCC VC

Finite element approximation of eigenvalue problems

Prof Danielle Boffi
(KAUST - Computer, Electrical and Mathematical Sciences and Engineering - CEMSE)
Abstract

In this informal talk I will review some theoretical and practical aspects related to the finite element approximation of eigenvalue problems arising from PDEs.
The review will cover elliptic eigenvalue problems and eigenvalue problems in mixed form, with particular emphasis on the Maxwell eigenvalue problem.
Other topics can be discussed depending on the interests of the audience, including adaptive schemes, approximation of parametric problems, reduced order models.
 

Thu, 14 Nov 2024
16:00
L4

Higher-order approximation of jump-diffusion McKean--Vlasov SDEs

Dr Verena Schwarz
(University of Klagenfurt)
Further Information

Please join us for refreshments outside the lecture room from 15:30.

 

Abstract

In this talk we study the numerical approximation of the jump-diffusion McKean--Vlasov SDEs with super-linearly growing drift, diffusion and jump-coefficient. In the first step, we derive the corresponding interacting particle system and define a Milstein-type approximation for this. Making use of the propagation of chaos result and investigating the error of the Milstein-type scheme we provide convergence results for the scheme. In a second step, we discuss potential simplifications of the numerical approximation scheme for the direct approximation of the jump-diffusion McKean--Vlasov SDE. Lastly, we present the results of our numerical simulations.

Mon, 21 Oct 2024
16:30
L4

Thomas-Fermi type models of external charge screening in graphene

Vitaly Moroz
(Swansea University)
Abstract

We propose a density functional theory of Thomas-Fermi-(von Weizsacker) type to describe the response of a single layer of graphene to a charge some distance away from the layer. We formulate a variational setting in which the proposed energy functional admits minimizers. We further provide conditions under which those minimizers are unique. The associated Euler-Lagrange equation for the charge density is also obtained, and uniqueness, regularity and decay of the minimizers are proved under general conditions. For a class of special potentials, we also establish a precise universal asymptotic decay rate, as well as an exact charge cancellation by the graphene sheet. In addition, we discuss the existence of nodal minimizers which leads to multiple local minimizers in the TFW model. This is a joint work with Cyrill Muratov (University of Pisa).

A class of memristive Hénon maps
Wang, Z Li, C Li, Y Moroz, I Fu, H Physica Scripta volume 99 issue 10 105227 (01 Oct 2024)
Subscribe to