Thu, 18 May 2023

16:00 - 17:00
L6

Volatility Forecasting with Machine Learning and Intraday Commonality

Yihuang Zhang
Abstract

We apply machine learning models to forecast intraday realized volatility (RV), by exploiting commonality in intraday volatility via pooling stock data together, and by incorporating a proxy for the market volatility. Neural networks dominate linear regressions and tree-based models in terms of performance, due to their ability to uncover and model complex latent interactions among variables. Our findings remain robust when we apply trained models to new stocks that have not been included in the training set, thus providing new empirical evidence for a universal volatility mechanism among stocks. Finally, we propose a new approach to forecasting one-day-ahead RVs using past intraday RVs as predictors, and highlight interesting time-of-day effects that aid the forecasting mechanism. The results demonstrate that the proposed methodology yields superior out-of-sample forecasts over a strong set of traditional baselines that only rely on past daily RVs.

Mon, 12 Jun 2023
13:00
L1

Spacetime and Duality symmetries

Peter West
(KCL )
Abstract

We argue that the existence of solitons in theories in which local symmetries are spontaneously broken requires spacetime to be enlarged by additional coordinates that are associated with large local transformations. In the context of gravity theories the usual coordinates of spacetime can be thought of arising in this way. E theory automatically contains such an enlarged spacetime. We propose that spacetime appears in an underlying theory when the local symmetries are spontaneously broken.

Thu, 27 Apr 2023
17:00
L4

Extremal models in affine logic

Tomás Ibarlucía
(Université Paris Diderot)
Abstract

Affine logic is the fragment of continuous logic in which the connectives are limited to affine functions. I will discuss the basics of this logic, first studied by Bagheri, and present the results of a recent joint work with I. Ben Yaacov and T. Tsankov in which we initiate the study of extreme types and extremal models in affine logic.

In particular, I will discuss an extremal decomposition result for models of simplicial affine theories, which generalizes the ergodic decomposition theorem.

Exploring QSAR models for activity-cliff prediction
Dablander, M Hanser, T Lambiotte, R Morris, G Journal of Cheminformatics volume 15 issue 1 (17 Apr 2023)
Transonic Flows and Isometric Embeddings
Chen, G Slemrod, M Wang, D The IMA Volumes in Mathematics and its Applications volume 153 257-266 (29 Mar 2011)
Subscribe to