Particle exchange models with several conservation laws
Abstract
In this talk I will present an exclusion process with different types of particles: A, B and C. This last type can be understood as holes. Two scaling limits will be discussed: hydrodynamic limits in the boundary driven setting; and equilibrium fluctuations for an evolution on the torus. In the later case, we distinguish several cases, that depend on the choice of the jump rates, for which we get in the limit either the stochastic Burgers equation or the Ornstein-Uhlenbeck equation. These results match with predictions from non-linear fluctuating hydrodynamics.
(Joint work with G. Cannizzaro, A. Occelli, R. Misturini).
12:30
Recovering scattering distributions from covariance-map images of product distributions
Abstract
Molecules can be broken apart with a high-powered laser or an electron beam. The position of charged fragments can then be detected on a screen. From the mass to charge ratio, the identity of the fragments can be determined. The covariance of two fragments then gives us the projection of a distribution related to the initial scattering distribution. We formulate the mathematical transformation from the scattering distribution to the covariance distribution obtained from experiments. We expand the scattering distribution in terms of basis functions to obtain a linear system for the coefficients, which we use to solve the inverse problem. Finally, we show the result of our method on three examples of test data, and also with experimental data.