Tue, 18 May 2021

11:00 - 12:30
Virtual

Extensions of Functions - Lecture 1 of 4

Dr. Krzysztof Ciosmak
(Oxford University)
Further Information

4 x 1.5 hour Lectures 

Aimed at: any DPhil students with interest in learning about extensions of functions. 

Suitable for OxPDE students, but also of interest to probabilists, functional analysts,  geometers and numerical analysts, and has a suitable level of prerequisites knowledge for people from those specialisms to join. 

Abstract

Abstract. The aim of the course is to present several results on extensions of functions. Among the most important are Kirszbraun's and Whitney's theorems.
They provide powerful technical tools in many problems of analysis. One way to view these theorems is that they show that there exists an interpolation
of data with certain properties. In this context they are useful in computer science, e.g. in clustering of data (see e.g. [26, 23]) and in dimension reduction (see e.g. [15]).

1. Syllabus
Lecture 1. McShane's theorem [25], Kirszbraun's theorem [18, 31, 35], Kneser- Poulsen conjecture [19, 29, 16].
Lecture 2. Whitney's covering and associated partition of unity, Whitney's ex-tension theorem [37, 12, 33].
Lecture 3. Whitney's theorem { minimal Lipschitz extensions [22].
Lecture 4. Ball's extension theorem, Markov type and cotype [6].

2. Required mathematical background
Markov chains, Hilbert spaces, Banach spaces, metric spaces, Zorn lemma

3. Reading list
The reading list consists of all the papers cited above, lecture notes [27], and parts of books [36, 8].

4. Assesment
Students will be encouraged to give a short talk on a topic related to the content of the course. Suggested topics include:
(1) Brehm's theorem [10],
(2) continuity of Kirszbraun's extension theorem [20],
(3) Kirszbraun's theorem for Alexandrov spaces [21, 1],
(4) two-dimensional Kneser-Poulsen conjecture [9],
(5) origami [11],
(6) absolutely minimising Lipschitz extensions and innity Laplacian [17, 32,
34, 2, 3, 5, 4],
(7) Fenchel duality and Fitzpatrich functions [30, 7],
(8) sharp form of Whitney's extension theorem [13],
(9) Whitney's extension theorem for Cm [14],
(10) Markov type and cotype calculation [27, 6, 28], 

(11) extending Lipschitz functions via random metric partitions [24, 27].

 

References
1. S. Alexander, V. Kapovitch, and A. Petrunin, Alexandrov meets Kirszbraun, 2017.
2. G. Aronsson, Minimization problems for the functional supx F(x; f(x); f0(x)), Ark. Mat. 6 (1965), no. 1, 33{53.
3. , Minimization problems for the functional supx F(x; f(x); f0(x))(ii), Ark. Mat. 6 (1966), no. 4-5, 409{431.
4. , Extension of functions satisfying lipschitz conditions, Ark. Mat. 6 (1967), no. 6, 551{561.
5. , Minimization problems for the functional supx F(x; f(x); f0(x))(iii), Ark. Mat. 7 (1969), no. 6, 509{512.
6. K. Ball, Markov chains, Riesz transforms and Lipschitz maps, Geometric & Functional Analysis GAFA 2 (1992), no. 2, 137{172.
7. H. Bauschke, Fenchel duality, Fitzpatrick functions and the extension of rmly nonexpansive mappings, Proceedings of the American Mathematical Society 135 (2007), no. 1, 135{139. MR 2280182
8. Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis, Colloquium publications (American Mathematical Society) ; v. 48, American Mathematical Society, Providence, R.I., 2000 (eng).
9. K. Bezdek and R. Connelly, Pushing disks apart { the Kneser-Poulsen conjecture in the plane, Journal fur die reine und angewandte Mathematik (2002), no. 553, 221 { 236.
10. U. Brehm, Extensions of distance reducing mappings to piecewise congruent mappings on Rm, J. Geom. 16 (1981), no. 2, 187{193. MR 642266
11. B. Dacorogna, P. Marcellini, and E. Paolini, Lipschitz-continuous local isometric immersions: rigid maps and origami, Journal de Mathematiques Pures et Appliques 90 (2008), no. 1, 66 { 81.
12. L. C. Evans and R. F. Gariepy, Measure theory and ne properties of functions; Rev. ed., Textbooks in mathematics, ch. 6, CRC Press, Oakville, 2015.
13. C. L. Feerman, A sharp form of Whitney's extension theorem, Annals of Mathematics 161 (2005), no. 1, 509{577. MR 2150391
14. , Whitney's extension problem for Cm, Annals of Mathematics 164 (2006), no. 1, 313{359. MR 2233850
15. L.-A. Gottlieb and R. Krauthgamer, A nonlinear approach to dimension reduction, Weizmann Institute of Science.
16. M. Gromov, Monotonicity of the volume of intersection of balls, Geometrical Aspects of Functional Analysis (Berlin, Heidelberg) (J. Lindenstrauss and V. D. Milman, eds.), Springer Berlin Heidelberg, 1987, pp. 1{4.
17. R. Jensen, Uniqueness of Lipschitz extensions: Minimizing the sup norm of the gradient, Archive for Rational Mechanics and Analysis 123 (1993), no. 1, 51{74.
18. M. Kirszbraun,  Uber die zusammenziehende und Lipschitzsche Transformationen, Fundamenta Mathematicae 22 (1934), no. 1, 77{108 (ger).
19. M. Kneser, Einige Bemerkungen uber das Minkowskische Flachenma, Archiv der Mathematik 6 (1955), no. 5, 382{390.
20. E. Kopecka, Bootstrapping Kirszbraun's extension theorem, Fund. Math. 217 (2012), no. 1, 13{19. MR 2914919
21. U. Lang and V. Schroeder, Kirszbraun's theorem and metric spaces of bounded curvature, Geometric & Functional Analysis GAFA 7 (1997), no. 3, 535{560. MR 1466337
22. E. Le Gruyer, Minimal Lipschitz extensions to dierentiable functions dened on a Hilbert space, Geometric and Functional Analysis 19 (2009), no. 4, 1101{1118. MR 2570317
23. J. Lee, Jl lemma and Kirszbraun's extension theorem, 2020, Sublinear Algorithms for Big Data Lectues Notes, Brown University.
24. J. R. Lee and A. Naor, Extending Lipschitz functions via random metric partitions, Inventiones mathematicae 160 (2005), no. 1, 59{95.
25. E. J. McShane, Extension of range of functions, Bull. Amer. Math. Soc. 40 (1934), no. 12, 837{842. MR 1562984
26. A. Naor, Probabilistic clustering of high dimensional norms, pp. 690{709. 

27. , Metric embeddings and Lipschitz extensions, Princeton University, Lecture Notes, 2015.
28. A. Naor, Y. Peres, O. Schramm, and S. Sheeld, Markov chains in smooth Banach spaces and Gromov-hyperbolic metric spaces, Duke Math. J. 134 (2006), no. 1, 165{197.
29. E. T. Poulsen, Problem 10, Mathematica Scandinavica 2 (1954), 346.
30. S. Reich and S. Simons, Fenchel duality, Fitzpatrick functions and the Kirszbraun{Valentine extension theorem, Proceedings of the American Mathematical Society 133 (2005), no. 9, 2657{2660. MR 2146211
31. I. J. Schoenberg, On a Theorem of Kirzbraun and Valentine, The American Mathematical Monthly 60 (1953), no. 9, 620{622. MR 0058232
32. S. Sheeld and C. K. Smart, Vector-valued optimal Lipschitz extensions, Communications on Pure and Applied Mathematics 65 (2012), no. 1, 128{154. MR 2846639
33. E. Stein, Singular integrals and dierentiability properties of functions, ch. 6, Princeton University Press, 1970.
34. P. V. Than, Extensions lipschitziennes minimales, Ph.D. thesis, INSA de Rennes, 2015.
35. F. A. Valentine, A Lipschitz condition preserving extension for a vector function, Amer. J. Math. 67 (1945), 83{93. MR 0011702
36. J. H. Wells and L. R. Williams, Embeddings and extensions in analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete ; Bd. 84, Springer-Verlag, Berlin, 1975 (eng).
37. H. Whitney, Analytic extensions of dierentiable functions dened in closed sets, Transactions of the American Mathematical Society 36 (1934), no. 1, 63{89. MR 1501735 

 

University of Oxford, Mathematical Institute and St John's College, Oxford, United Kingdom
E-mail address: @email

 

Fri, 19 Feb 2021
16:00
Virtual

The statistical mechanics of near-extremal and near-BPS black holes

Luca Iliesiu
(Stanford University)
Abstract

An important open question in black hole thermodynamics is about the existence of a "mass gap" between an extremal black hole and the lightest near-extremal state within a sector of fixed charge. In this talk, I will discuss how to reliably compute the partition function of 4d Reissner-Nordstrom near-extremal black holes at temperature scales comparable to the conjectured gap. I will show that the density of states at fixed charge does not exhibit a gap in the simplest gravitational non-supersymmetric theories; rather, at the expected gap energy scale, we see a continuum of states whose meaning we will extensively discuss. Finally, I will present a similar computation for nearly-BPS black holes in 4d N=2 supergravity. As opposed to their non-supersymmetric counterparts, such black holes do in fact exhibit a gap consistent with various string theory predictions.

Thu, 25 Feb 2021

16:00 - 17:00
Virtual

Discrete-time signatures and randomness in reservoir computing (joint work with Christa Cuchiero, Lukas Gonon, Lyudmila Grigoryeva, Juan-Pablo Ortega)

Josef Teichmann
(ETH Zurich)
Further Information
Abstract

A new explanation of geometric nature of the reservoir computing phenomenon is presented. Reservoir computing is understood in the literature as the possibility of approximating input/output systems with randomly chosen recurrent neural systems and a trained linear readout layer. Light is shed on this phenomenon by constructing what is called strongly universal reservoir systems as random projections of a family of state-space systems that generate Volterra series expansions. This procedure yields a state-affine reservoir system with randomly generated coefficients in a dimension that is logarithmically reduced with respect to the original system. This reservoir system is able to approximate any element in the fading memory filters class just by training a different linear readout for each different filter. Explicit expressions for the probability distributions needed in the generation of the projected reservoir system are stated and bounds for the committed approximation error are provided.

Thu, 04 Mar 2021

16:00 - 17:00
Virtual

Machine Learning for Partial Differential Equations

Michael Brenner
(Harvard University)
Further Information
Abstract

Our understanding and ability to compute the solutions to nonlinear partial differential equations has been strongly curtailed by our inability to effectively parameterize the inertial manifold of their solutions.  I will discuss our ongoing efforts for using machine learning to advance the state of the art, both for developing a qualitative understanding of "turbulent" solutions and for efficient computational approaches.  We aim to learn parameterizations of the solutions that give more insight into the dynamics and/or increase computational efficiency. I will discuss our recent work using machine learning to develop models of the small scale behavior of spatio-temporal complex solutions, with the goal of maintaining accuracy albeit at a highly reduced computational cost relative to a full simulation.  References: https://www.pnas.org/content/116/31/15344 and https://arxiv.org/pdf/2102.01010.pdf 

Tue, 16 Mar 2021

17:00 - 18:00

From one extreme to another: the statistics of extreme events - Jon Keating

Further Information

Oxford Mathematics Public Lecture
Tuesday 16 March 2021
5.00-6.00pm

Jon Keating will discuss the statistics of rare, extreme events in various contexts, including: evaluating performance at the Olympics; explaining how glasses freeze; illustrating why computers are more effective than expected at learning; and understanding the Riemann zeta-function, the mathematical object that encodes the mysterious distribution of the prime numbers. 

Jon Keating is Sedleian Professor of Natural Philosophy in the University of Oxford and a Fellow of The Queen's College.

Watch live (no need to register and it will stay up afterwards):

Oxford Mathematics Twitter
Oxford Mathematics Facebook
Oxford Mathematics Livestream
Oxford Mathematics YouTube

The Oxford Mathematics Public Lectures are generously supported by XTX Markets.

Tue, 23 Feb 2021
16:00

Yangian Bootstrap for Massive Feynman Integrals

Julian Miczajka
(Humboldt University, Berlin)
Abstract

In this talk I review the recent discovery of Yangian symmetry for massive Feynman integrals and how it can be used to set up a Yangian Bootstrap. I will provide elementary proofs of the symmetry at one and two loops, whereas at generic loop order I conjecture that all graphs cut from regular tilings of the plane with massive propagators on the boundary enjoy the symmetry. After demonstrating how the symmetry may be used to constrain the functional form of Feynman integrals on explicit examples, I comment on how a subset of the diagrams for which the symmetry is conjectured to hold is naturally embedded in a Massive Fishnet theory that descends from gamma-deformed Coulomb branch N=4 Super-Yang-Mills theory in a particular double scaling limit.

Fri, 26 Feb 2021

14:00 - 15:00
Virtual

Fusion Systems and Rank 2 Amalgams

Martin van Beek
(University of Birmingham)
Abstract

Saturated fusion systems capture and abstract conjugacy in $p$-subgroups of finite groups and have recently found application in finite group theory, representation theory and algebraic topology. In this talk, we describe a situation in which we may identify a rank $2$ amalgam within $\mathcal{F}$ and, using some local group theoretic techniques, completely determine $\mathcal{F}$ up to isomorphism.

Subscribe to