Mon, 08 Mar 2021
14:00
Virtual

Free Energy from Replica Wormholes

Netta Engelhardt
(MIT)
Abstract

Recent developments on the black hole information paradox have shown that Euclidean wormholes — so called “replica wormholes’’  — can dominate the von Neumann entropy as computed by a gravitational path integral, and that inclusion of these wormholes results in a unitary Page curve. This development raises some puzzles from the perspective of factorization, and has raised questions regarding what the gravitational path integral is computing. In this talk, I will focus on understanding the relationship between the gravitational path integral and the partition function via the gravitational free energy (more generally the generating functional). A proper computation of the free energy requires a replica trick distinct from the usual one used to compute the entropy. I will show that in JT gravity there is a regime where the free energy computed without replica wormholes is pathological. Interestingly, the inclusion of replica wormholes is not quite sufficient to resolve the pathology: an alternative analytic continuation is required. I will discuss the implications of this for various interpretations of the gravitational path integral (e.g. as computing an ensemble average) and also mention some parallels with spin glasses. 

Fri, 05 Mar 2021

14:00 - 15:00
Virtual

Graduated orders and their lattices

Miriam Norris
(King's College London)
Abstract

For $G$ a finite group, $p$ a prime and $(K, \mathcal{O}_K, k)$ a $p$-modular system the group ring $\mathcal{O}_K G$ is an $\mathcal{O}_k$-order in the $K$-algebra $KG.$ Graduated $\mathcal{O}_K$-orders are a particularly nice class of $\mathcal{O}_K$-orders first introduced by Zassenhaus. In this talk will see that an $\mathcal{O}_K$-order $\Lambda$ in a split $K$-algebra $A$ is graduated if the decomposition numbers for the regular $A$-module are no greater than $1$. Furthermore will see that graduated orders can be described (not uniquely) by a tuple $n$ and a matrix $M$ called the exponant matrix. Finding a suitable $n$ and $M$ for a graduated order $\Lambda$ in the $K$-algebra $A$ provides a parameterisation of the $\Lambda$-lattices inside the regular $A$-module. Understanding the $\mathcal{O}_K G$-lattices inside representations of certain groups $G$ is of interest to those involved in the Langlands programme as well as of independent interest to algebraists.

Take a piece of rope and knot it as you wish. When you are done, glue the two extremities together and you will obtain a physical realisation of what mathematicians also call a knot: a simple closed curve in 3-dimensional space. Now, put the knotted rope on a table and take a picture of it from above. It is now a planar projection of your knot. The mathematical equivalent of it is a knot diagram with multiple crossings as shown in the figure.

Wed, 10 Feb 2021

16:00 - 17:00

Totally geodesic submanifolds of symmetric spaces

Ivan Solonenko
Abstract

Totally geodesic submanifolds are perhaps one of the easiest types of submanifolds of Riemannian manifolds one can study, since a maximal totally geodesic submanifold is completely determined by any one of its points and the tangent space at that point. It comes as a bit of a surprise then that classification of such submanifolds — up to an ambient isometry — is a nightmarish and widely open question, even on such a manageable and well-understood class of Riemannian manifolds as symmetric spaces.

We will discuss the theory of totally geodesic submanifolds of symmetric spaces and see that any maximal such submanifold is homogeneous and thus can be completely encoded by some Lie algebraic data called a 'Lie triple'. We will then talk about the duality between symmetric spaces of compact and noncompact type and discover that there is a one-to-one correspondence between totally geodesic submanifolds of a symmetric space and its dual. Finally, we will touch on the known classification in rank one symmetric spaces, namely in spheres and projective/hyperbolic spaces over real normed division algebras. Time permitting, I will demonstrate how all this business comes in handy in other geometric problems on symmetric spaces, e. g. in classification of isometric cohomogeneity one actions.

Link: https://teams.microsoft.com/l/meetup-join/19%3ameeting_ZGRiMTM1ZjQtZWNi…

Mon, 08 Feb 2021
12:45
Virtual

Confinement in 4d N=1 from 6d N=(2,0)

Lakshya Bhardwaj
(University of Oxford)
Abstract

We will discuss confinement in 4d N=1 theories obtained after soft supersymmetry breaking deformations of 4d N=2 Class S theories. Confinement is characterised by a subgroup of the 1-form symmetry group of the theory that is left unbroken in a massive vacuum of the theory. The 1-form symmetry group is encoded in the Gaiotto curve associated to the Class S theory, and its spontaneous breaking in a vacuum is encoded in the N=1 curve (which plays the role of Seiberg-Witten curve for N=1) associated to that vacuum. Using this proposal, we will recover the expected properties of confinement in N=1 SYM theories, and the theories studied by Cachazo, Douglas, Seiberg and Witten. We will also recover the dependence of confinement on the choice of gauge group and discrete theta parameters in these theories.

Thu, 11 Feb 2021

16:00 - 17:00

Bayesian Inference for Economic Agent-Based Models using Tools from Machine Learning

DONOVAN PLATT
((Oxford University))
Abstract

Recent advances in computing power and the potential to make more realistic assumptions due to increased flexibility have led to the increased prevalence of simulation models in economics. While models of this class, and particularly agent-based models, are able to replicate a number of empirically-observed stylised facts not easily recovered by more traditional alternatives, such models remain notoriously difficult to estimate due to their lack of tractable likelihood functions. While the estimation literature continues to grow, existing attempts have approached the problem primarily from a frequentist perspective, with the Bayesian estimation literature remaining comparatively less developed. For this reason, we introduce a widely-applicable Bayesian estimation protocol that makes use of deep neural networks to construct an approximation to the likelihood, which we then benchmark against a prominent alternative from the existing literature.
 

Subscribe to