Thu, 04 Mar 2021

12:00 - 13:00
Virtual

The Power of Film

John Wettlaufer
(Yale/Nordita)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

The pandemic has had a deleterious influence on the Hollywood film
industry.  Fortunately,  however, the thin film industry continues to
flourish.  A host of effects are responsible for confined liquids
exhibiting properties that differ from their bulk counterparts. For
example, the dominant polarization and surface forces across a layered
system can control the material behavior on length scales vastly larger
than the film thickness.  This basic class of phenomena, wherein
volume-volume interactions create large pressures, are at play in,
amongst many other settings, wetting, biomaterials, ceramics, colloids,
and tribology.  When the films so created involve phase change and are
present in disequilibrium, the forces can be so large that they destroy
the setting that allowed them to form in the first place. I will
describe the connection between such films in a semi-traditional wetting
dynamics geometry and active brownian dynamics.  I then explore their
power to explain a wide range of processes from materials- to astro- to
geo-science.

Thu, 25 Feb 2021

12:00 - 13:00
Virtual

Asymptotic analysis of phase-field models

Andreas Muench
(University of Oxford)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

We study the evolution of solid surfaces and pattern formation by
surface diffusion. Phase field models with degenerate mobilities are
frequently used to model such phenomena, and are validated by
investigating their sharp interface limits. We demonstrate by a careful
asymptotic analysis involving the matching of exponential terms that a
certain combination of degenerate mobility and a double well potential
leads to a combination of both surface and non-linear bulk diffusion to
leading order. If time permits, we will discuss implications and extensions.

Thu, 11 Feb 2021

12:00 - 13:00
Virtual

Peristalsis, beading and hexagons: three short stories about elastic instabilities in soft solids

John Biggins
(Cambridge)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

This talk will be three short stories on the general theme of elastic
instabilities in soft solids. First I will discuss the inflation of a
cylindrical cavity through a bulk soft solid, and show that such a
channel ultimately becomes unstable to a finite wavelength peristaltic
undulation. Secondly, I will introduce the elastic Rayleigh Plateau
instability, and explain that it is simply 1-D phase separation, much
like the inflationary instability of a cylindrical party balloon. I will
then construct a universal near-critical analytic solution for such 1-D
elastic instabilities, that is strongly reminiscent of the
Ginzberg-Landau theory of magnetism. Thirdly, and finally, I will
discuss pattern formation in layer-substrate buckling under equi-biaxial
compression, and argue, on symmetry grounds, that such buckling will
inevitably produce patterns of hexagonal dents near threshold.

Thu, 04 Feb 2021

12:00 - 13:00
Virtual

From Fast Cars to Breathing Aids: the UCL Ventura Non-Invasive Ventilator for COVID-19

Rebecca Shipley
(UCL)
Further Information

We continue this term with our flagship seminars given by notable scientists on topics that are relevant to Industrial and Applied Mathematics. 

Note the new time of 12:00-13:00 on Thursdays.

This will give an opportunity for the entire community to attend and for speakers with childcare responsibilities to present.

Abstract

In March 2020, as COVID-19 cases started to surge for the first time in the UK, a team spanning UCL engineers, University College London Hospital (UCLH) intensivists and Mercedes Formula 1 came together to design, manufacture and deploy non-invasive breathing aids for COVID-19 patients. We reverse engineered and an off-patent CPAP (continuous positive airways pressure) device, the Philips WhisperFlow, and changed its design to minimise its oxygen utilisation (given that hospital oxygen supplies are under extreme demand). The UCL-Ventura received regulatory approvals from the MHRA within 10 days, and Mercedes HPP manufactured 10,000 devices by mid-April. UCL-Ventura CPAPs are now in use in over 120 NHS hospitals.


In response to international need, the team released all blueprints open source to enable local manufacture in other countries, alongside a support package spanning technical, manufacturing, clinical and regulatory components. The designs have been downloaded 1900 times across 105 countries, and around 20 teams are now manufacturing at scale and deploying in local hospitals. We have also worked closely with NGOs, on a non-profit basis, to deliver devices directly to countries with urgent need, including Palestine, Uganda and South Africa.

Tue, 11 May 2021

14:00 - 15:00
Virtual

Discrete Curvature and Applications in Representation Learning

Melanie Weber
(Princeton University)
Abstract

The problem of identifying geometric structure in heterogeneous, high-dimensional data is a cornerstone of representation learning. In this talk, we study the problem of data geometry from the perspective of Discrete Geometry. We focus specifically on the analysis of relational data, i.e., data that is given as a graph or can be represented as such.

We start by reviewing discrete notions of curvature, where we focus especially on discrete Ricci curvature. Then we discuss the problem of embeddability: For downstream machine learning and data science applications, it is often beneficial to represent data in a continuous space, i.e., Euclidean, Hyperbolic or Spherical space. How can we decide on a suitable representation space? While there exists a large body of literature on the embeddability of canonical graphs, such as lattices or trees, the heterogeneity of real-world data limits the applicability of these classical methods. We discuss a combinatorial approach for evaluating embeddability, where we analyze nearest-neighbor structures and local neighborhood growth rates to identify the geometric priors of suitable embedding spaces. For canonical graphs, the algorithm’s prediction provably matches classical results. As for large, heterogeneous graphs, we introduce an efficiently computable statistic that approximates the algorithm’s decision rule. We validate our method over a range of benchmark data sets and compare with recently published optimization-based embeddability methods. 

The future is full of uncertainty, but we still need to make plans and decisions based on the data we have.  Where should a hospital invest its resources to allow for changing health needs in a year's time?  Should the supermarket order extra ice cream because the summer will be warm and sunny?  Should the council road maintenance team get extra gritting salt ready for an icy winter? Making predictions is hard - and maths can help, as we’ll see in this interactive webinar.

Mon, 01 Feb 2021
12:15
Virtual

5D non-Lorentzian CFT’s and 6D Physics

Neil Lambert
(King's College London)
Abstract

NOTE: unusual time! 

 

We discuss a class of 5-dimensional supersymmetric non-Lorentzian Lagrangians with an SU(1,3) conformal symmetry. These theories arise from reduction of 6-dimensional CFT's on a comformally compactified spacetime. We use the SU(1,3) Ward identities to find the form of the correlation functions which have a rich structure. Furthermore we show how these can be used to reconstruct  6-dimensional  CFT correlators. 
 

Tue, 16 Mar 2021
14:15
Virtual

The Quot scheme Quotˡ(E)

Samuel Stark
(Imperial College London)
Abstract

Grothendieck's Quot schemes — moduli spaces of quotient sheaves — are fundamental objects in algebraic geometry, but we know very little about them. This talk will focus on a relatively simple special case: the Quot scheme Quotˡ(E) of length l quotients of a vector bundle E of rank r on a smooth surface S. The scheme Quotˡ(E) is a cross of the Hilbert scheme of points of S (E=O) and the projectivisation of E (l=1); it carries a virtual fundamental class, and if l and r are at least 2, then Quotˡ(E) is singular. I will explain how the ADHM description of Quotˡ(E) provides a conjectural description of the singularities, and show how they can be resolved in the l=2 case. Furthermore, I will describe the relation between Quotˡ(E) and Quotˡ of a quotient of E, prove a functoriality result for the virtual fundamental class, and use it to compute certain tautological integrals over Quotˡ(E).

Subscribe to