Mon, 15 Jun 2020
14:15
Virtual

Geometry from Donaldson-Thomas invariants

Tom Bridgeland
(Sheffield)
Abstract

I will describe an ongoing research project which aims to encode the DT invariants of a CY3 triangulated category in a geometric structure on its space of stability conditions. More specifically we expect to find a complex hyperkahler structure on the total space of the tangent bundle. These ideas are closely related to the work of Gaiotto, Moore and Neitzke from a decade ago. The main analytic input is a class of Riemann-Hilbert problems involving maps from the complex plane to an algebraic torus with prescribed discontinuities along a collection of rays.

Phase-dependence of response curves to deep brain stimulation and their relationship: from essential tremor patient data to a Wilson–Cowan model
Duchet, B Weerasinghe, G Cagnan, H Brown, P Bick, C Bogacz, R Journal of Mathematical Neuroscience volume 10 issue 1 (30 Mar 2020)
Tue, 19 May 2020
15:30
Virtual

Maximum height of 3D Ising interfaces

Eyal Lubetzky
(Courant Institute)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Dobrushin (1972) showed that, at low enough temperatures, the interface of the 3D Ising model - the random surface separating the plus and minus phases above and below the $xy$-plane - is localized: it has $O(1)$ height fluctuations above a fixed point, and its maximum height $M_n$ on a box of side length $n$ is $O_P(\log n)$. We study this interface and derive a shape theorem for its "pillars" conditionally on reaching an atypically large height. We use this to analyze the maximum height $M_n$ of the interface, and prove that at low temperature $M_n/\log n$ converges to $c\beta$ in probability. Furthermore, the sequence $(M_n - E[M_n])_{n\geq 1}$ is tight, and even though this sequence does not converge, its subsequential limits satisfy uniform Gumbel tails bounds.
Joint work with Reza Gheissari.

Subscribe to