Mon, 27 Jun 2022
16:15
St Catherine's

The Reddick Lecture 2022: The Benefits of Applied Mathematics in Product Development

Dr Uwe Beuscher, W.L. Gore & Associates, Inc.
Further Information

For more information, and to register your interest, please visit the Reddick Lecture web page

Abstract

Throughout a product development project, many decisions must be made. These include whether to start, stop, continue, or re-direct a project based on the learnings of the project team. Some of these decisions are related to the risk of achieving certain product performance attributes and they are often based on experimental observations in the laboratory or in field applications of early prototypes. Sometimes, these observations provide sufficient insight but often a significant uncertainty remains. Mathematical simulation can provide deeper insight into the mechanisms, may indicate limiting parameters and transport steps, and allows exploration of novel prototypes without actually making them. This talk will illustrate how Mathematics have been used to inform project development projects and their guiding decisions at WL Gore by describing examples from three very different applications.

On the Equations Defining Some Hilbert Schemes
Hauenstein, J Manivel, L Szendrői, B Vietnam Journal of Mathematics volume 50 issue 2 487-500 (01 Apr 2022)
Thu, 24 Feb 2022
11:45
Virtual

Absolute Model Companionship, the AMC-spectrum of set theory, and the continuum problem

Matteo Viale
(University of Torino)
Abstract

We introduce a classification tool for mathematical theories based on Robinson's notion of model companionship; roughly the idea is to attach to a mathematical theory $T$ those signatures $L$ such that $T$ as axiomatized in $L$ admits a model companion. We also introduce a slight strengthening of model companionship (absolute model companionship - AMC) which characterize those model companionable $L$-theories $T$ whose model companion is axiomatized by the $\Pi_2$-sentences for $L$ which are consistent with the universal theory of any $L$-model of $T$.

We use the above to analyze set theory, and we show that the above classification tools can be used to extract (surprising?) information on the continuum problem.

A topological approach to mapping space signatures
Giusti, C Lee, D Nanda, V Oberhauser, H (01 Feb 2022)
Search for relativistic magnetic monopoles with eight years of IceCube data
Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Alves, A Amin, N An, R Andeen, K Anderson, T Anton, G Argüelles, C Ashida, Y Axani, S Bai, X Balagopal V., A Barbano, A Barwick, S Bastian, B Basu, V Baur, S Bay, R Beatty, J Becker, K Becker Tjus, J Bellenghi, C BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Boddenberg, M Bontempo, F Borowka, J Böser, S Botner, O Böttcher, J Bourbeau, E Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Browne, S Sarkar, S Physical Review Letters volume 128 issue 5 (02 Feb 2022)
Non-uniqueness of minimal surfaces in a product of closed Riemann surfaces
Markovic, V Geometric and Functional Analysis volume 32 31-52 (17 Jan 2022)
Tue, 08 Feb 2022
12:00
L5

A Mathematical Study of Hawking Radiation for Reissner Nordstrom black holes

Fred Alford
(Imperial College)
Abstract

In the first part of this talk, we will (briefly) derive the original calculation by Hawking in 1974 to determine the radiation given off by a black hole, giving the result in the form of an integral of a classical solution to the linear wave equation.
In the second part of the talk, we will take this integral as a starting point, and rigorously calculate the radiation given off by a forming spherically symmetric, charged black hole. We will then show that for late times in its formation, the radiation given off approaches the limit predicted by Hawking, including the extremal case. We will also calculate a bound on the rate at which this limit is approached.

Tue, 08 Mar 2022
12:00
L5

Classical physics and scattering amplitudes on curved backgrounds

Andrea Christofoli
(Edinburgh)
Abstract

A particle physics approach to describing black hole interactions is opening new avenues for understanding gravitational-wave observations. We will start by reviewing this paradigm change, showing how to compute observables in general relativity from amplitudes on flat spacetime. We will then present a generalization of this framework for amplitudes on curved backgrounds. Evaluating the required one-to-one amplitudes already shows remarkable structures. We will discuss them in detail, including eikonal behaviours and unexpected KLT-like factorization properties for amplitudes on stationary backgrounds. We will then conclude by discussing applications of these amplitudes to strong field observables such as the impulse on a curved background and memory effects

 

 

 

Subscribe to