Thu, 09 May 2019

14:00 - 15:00
L4

Quasi-optimal and pressure robust discretizations of the Stokes equations.

Dr Pietro Zanotti
(TU Dortmund)
Abstract

ABSTRACT

We approximate the solution of the stationary Stokes equations with various conforming and nonconforming inf-sup stable pairs of finite element spaces on simplicial meshes. Based on each pair, we design a discretization that is quasi-optimal and pressure robust, in the sense that the velocity H^1-error is proportional to the best H^1-error to the analytical velocity. This shows that such a property can be achieved without using conforming and divergence-free pairs. We bound also the pressure L^2-error, only in terms of the best approximation errors to the analytical velocity and the analytical pressure. Our construction can be summarized as follows. First, a linear operator acts on discrete velocity test functions, before the application of the load functional, and maps the discrete kernel into the analytical one.

Second, in order to enforce consistency, we  possibly employ a new augmented Lagrangian formulation, inspired by Discontinuous Galerkin methods.

Mon, 18 Feb 2019

14:15 - 15:15
L4

Ricci Flow in Milnor Frames

Syafiq Johar
(Oxford)
Abstract

In this talk, we are going to talk about the Type I singularity on 4-dimensional manifolds foliated by homogeneous S3 evolving under the Ricci
flow. We review the study on rotationally symmetric manifolds done by Angenent and Isenberg as well as by Isenberg, Knopf and Sesum. In the latter, a global frame for the tangent bundle, called the Milnor frame, was used to set up the problem. We shall look at the symmetries of the manifold, derived from Lie groups and its ansatz metrics, and this global tangent bundle frame developed by Milnor and Bianchi. Numerical simulations of the Ricci flow on these manifolds are done, following the work by Garfinkle and Isenberg, providing insight and conjectures for the main problem. Some analytic results will be proven for the manifolds S1×S3 and S4 using maximum principles from parabolic PDE theory and some sufficiency conditions for a neckpinch singularity will be provided. Finally, a problem from general relativity with similar metric symmetries but endowed on a manifold with differenttopology, the Taub-Bolt and Taub-NUT metrics, will be discussed.

 

 

Homogenization theory aims to understand the properties of materials with complicated microstructures, such as those arising from flaws in a manufacturing process or from randomly deposited impurities. The goal is to identify an effective model that provides an accurate approximation of the original material. Oxford Mathematician Benjamin Fehrman discusses his research. 

"The practical considerations for identifying a simplified model are twofold:

Tue, 22 Jan 2019

15:30 - 16:30
L4

The tautological ring of Shimura varieties

Paul Ziegler
(Oxford)
Abstract

Not much is known about the Chow rings  of moduli spaces of abelian varieties or more general Shimura varieties. The tautological ring of a Shimura variety of Hodge type is a subring of its Chow ring containing many "interesting" classes. I will talk about joint work with Torsten Wedhorn on this ring as well as its characteristic p variant. The later is strongly related to the question of understanding the cycle classes of Ekedahl-Oort strata in the Chow ring.

Thu, 14 Feb 2019

16:00 - 17:30
L3

The role of soluble surfactants on the stability of two-layer flow in a channel

Dr Anna Kalogirou
(University of East Anglia)
Abstract

A two-layer shear flow in the presence of surfactants is considered. The flow configuration comprises two superposed layers of viscous and immiscible fluids confined in a long horizontal channel, and characterised by different densities, viscosities and thicknesses. The surfactants can be insoluble, i.e. located at the interface between the two fluids only, or soluble in the lower fluid in the form of monomers (single molecules) or micelles (multi-molecule aggregates). A mathematical model is formulated, consisting of governing equations for the hydrodynamics and appropriate transport equations for the surfactant concentration at the interface, the concentration of monomers in the bulk fluid and the micelle concentration. A primary objective of this study is to investigate the effect of surfactants on the stability of the interface, and in particular surfactants in high concentrations and above the critical micelle concentration (CMC). Interfacial instabilities are induced due to the acting forces of gravity and inertia, as well as the action of Marangoni forces generated as a result of the dependence of surface tension on the interfacial surfactant concentration. The underlying physical mechanism responsible for the formation of interfacial waves will be discussed, together with the complex flow dynamics (typical nonlinear phenomena associated with interfacial flows include travelling waves, solitary pulses, quasi-periodic and chaotic dynamics).

Subscribe to