Wed, 30 Jan 2019
15:00
L4

Wave: A New Family of Trapdoor Preimage Sampleable Functions Based on Codes

Thomas Debris-Alazard
(INRIA Paris)
Further Information

It is a long-standing open problem to build an efficient and secure digital signature scheme based on the hardness of decoding a linear code which could compete with widespread schemes like DSA or RSA. The latter signature schemes are broken by a quantum computer with Shor’s algorithm. Code-based schemes could provide a valid quantum resistant replacement. We present here Wave the first « hash-and-sign » code-based signature scheme which strictly follows the GPV strategy which ensures universal unforgeability. It uses the family of ternary generalized $(U, U+V)$ codes. Our algorithm produces uniformly distributed signatures through a suitable rejection sampling (one rejection every 3 or 4 signatures). Furthermore, our scheme enjoys efficient signature and verification algorithms. Typically, for 128 bits of classical security, signatures are in the order of 10 thousand bits long and the public key is in the order of one megabyte.​

Thu, 14 Feb 2019

16:00 - 17:00
L6

p-Adic Asai L-functions of Bianchi modular forms

Chris Williams
(Imperial College)
Abstract

The Asai (or twisted tensor) L-function attached to a Bianchi modular form is the 'restriction to the rationals' of the standard L-function. Introduced by Asai in 1977, subsequent study has linked its special values to the arithmetic of the corresponding form. In this talk, I will discuss joint work with David Loeffler in which we construct a p-adic Asai L-function -- that is, a measure on Z_p* that interpolates the critical values L^As(f,chi,1) -- for ordinary weight 2 Bianchi modular forms. We use a new method for constructing p-adic L-functions, using Kato's system of Siegel units to build a 'Betti analogue' of an Euler system, building on algebraicity results of Ghate. I will start by giving a brief introduction to p-adic L-functions and Bianchi modular forms, and if time permits, I will briefly mention another case where the method should apply, that of non-self-dual automorphic representations for GL(3).

Tue, 05 Feb 2019

12:45 - 13:30
C3

A Boundary Layer Analysis for the Initiation of Reactive Shear Bands

Robert Timms
((Oxford University))
Abstract

Unintended low energy thermal or mechanical stimuli can lead to the accidental ignition of explosive materials. During such events, described as ‘insults’ in the literature, ignition of the explosive is caused by localised regions of high temperature known as ‘hot spots’. We develop a model which helps us to understand how highly localised shear deformation, so-called shear banding, acts as a mechanism for hot spot generation. Through a boundary layer analysis, we give a deeper insight into how the additional self heating caused by chemical reactions affects the initiation and development of shear bands,  and highlight the key physical properties which control this process.

Tue, 12 Feb 2019

14:30 - 15:30
L6

Asymptotic normality in random graphs with given vertex degrees.

Svante Janson
Abstract

We study random (simple) graphs with given vertex degrees, in the sparse case where the average degree is bounded. Assume also that the second moment of the vertex degree is bounded. The standard method then is to use the configuration model to construct a random multigraph and condition it on
being simple.

This works well for results of the type that something holds with high probability, or that something converges in probability, but it does not immediately apply to convergence in distribution, for example asymptotic normality. (Although this has been done by special arguments in a couple of cases, by Janson and Luczak and by Riordan.) A typical example is the recent result by Barbour and Röllin on asymptotic normality of the size of the giant component of the multigraph (in the supercritical case); it is an obvious conjecture that the same results hold for the random simple graph.

We discuss two new approaches to this, both based on old methods. Both apply to the size of the giant component, using rather minor special arguments.

One approach uses the method of moments to obtain joint convergence of the variable of interest together with the numbers of loops and multiple edges
in the  multigraph.

The other approach uses switchings to modify the multigraph and construct a simple graph. This simple random graph will not have a uniform distribution,
but almost, and this is good enough.

Fri, 08 Feb 2019

16:45 - 17:45
L6

Commutative-by-finite Hopf algebras

Ken Brown
Abstract

Roughly speaking, a commutative-by-finite Hopf algebra is a Hopf
algebra which is an extension of a commutative Hopf algebra by a
finite dimensional Hopf algebra.
There are many big and significant classes of such algebras
(beyond of course the commutative ones and the finite dimensional ones!).
I'll make the definition precise, discuss examples
and review results, some old and some new.
No previous knowledge of Hopf algebras is necessary.
 

Fri, 08 Feb 2019

15:00 - 16:00
L3

HOCHSCHILD COHOMOLOGY AND GERSTENHABER BRACKET OF A FAMILY OF SUBALGEBRAS OF THE WEYL ALGEBRA

Andrea Solotar
Abstract

For a polynomial $h(x)$ in $F[x]$, where $F$ is any field, let $A$ be the
$F$-algebra given by generators $x$ and $y$ and relation $[y, x]=h$.
This family of algebras include the Weyl algebra, enveloping algebras of
$2$-dimensional Lie algebras, the Jordan plane and several other
interesting subalgebras of the Weyl algebra.

In a joint work in progress with Samuel Lopes, we computed the Hochschild
cohomology $HH^*(A)$ of $A$ and determined explicitly the Gerstenhaber
structure of $HH^*(A)$, as a Lie module over the Lie algebra $HH^1(A)$.
In case $F$ has characteristic $0$, this study has revealed that $HH^*(A)$
has finite length as a Lie module over $HH^1(A)$ with pairwise
non-isomorphic composition factors and the latter can be naturally
extended into irreducible representations of the Virasoro algebra.
Moreover, the whole action can be understood in terms of the partition
formed by the multiplicities of the irreducible factors of the polynomial
$h$.
 

Mon, 11 Feb 2019
15:45
L6

Local flexibility for open partial differential relations

Bernhard Hanke
(University of Augsburg)
Abstract

In his famous book on partial differential relations Gromov formulates an exercise concerning local deformations of solutions to open partial differential relations. We will explain the content of this fundamental assertion and sketch a proof. 

In the sequel we will apply this to extend local deformations of closed $G_2$ structures, and to construct 
$C^{1,1}$-Riemannian metrics which are positively curved "almost everywhere" on arbitrary manifolds. 

This is joint work with Christian Bär (Potsdam).

Mon, 04 Feb 2019
15:45
L6

Slice discs in stabilized 4-balls

Matthias Nagel
(Oxford)
Abstract


We recall the impact of stabilizing a 4-manifold with $S^2 \times S^2$. The corresponding local situation concerns knots in the 3-sphere which bound (nullhomotopic) discs in a stabilized 4-ball. We explain how these discs arise, and discuss bounds on the minimal number of stabilizations needed. Then we compare this minimal number to the 4-genus.
This is joint work with A. Conway.

Subscribe to