Structure of martingale transports in finite dimensions
Abstract
Martingale optimal transport is a variant of the classical optimal transport problem where a martingale constraint is imposed on the coupling. In a recent paper, Beiglböck, Nutz and Touzi show that in dimension one there is no duality gap and that the dual problem admits an optimizer. A key step towards this achievement is the characterization of the polar sets of the family of all martingale couplings. Here we aim to extend this characterization to arbitrary finite dimension through a deeper study of the convex order
Trading ethics for quants
Abstract
I spent a number of years trading government bonds and interest-rate derivatives for Barclays Capital. This included the period of the financial crisis, and I was a colleague of some of the Barclays traders charged with fraud related to LIBOR rate manipulation. I will present a some examples of common trading scenarios, and some of the ethical issues these might raise for quants.
General Dynamic Term Structures under Default Risk
Abstract
We consider the problem of modelling the term structure of defaultable bonds, under minimal assumptions on the default time. In particular, we do not assume the existence of a default intensity and we therefore allow for the possibility of default at predictable times. It turns out that this requires the introduction of an additional term in the forward rate approach by Heath, Jarrow and Morton (1992). This term is driven by a random measure encoding information about those times where default can happen with positive probability. In this framework, we derive necessary and sufficient conditions for a reference probability measure to be a local martingale measure for the large financial market of credit risky bonds, also considering general recovery schemes. This is based on joint work with Thorsten Schmidt.
LSM Reloaded - Differentiate xVA on your iPad Mini
Abstract
This document reviews the so called least square methodology (LSM) and its application for the valuation and risk of callable exotics and regulatory value adjustments (xVA). We derive valuation algorithms for xVA, both with or without collateral, that are particularly accurate, efficient and practical. These algorithms are based on a reformulation of xVA, designed by Jesper Andreasen and implemented in Danske Bank's award winning systems, that hasn't been previously published in full. We then investigate the matter of risk sensitivities, in the context of Algorithmic Automated Differentiation (AAD). A rather recent addition to the financial mathematics toolbox, AAD is presently generally acknowledged as a vastly superior alternative to the classical estimation of risk sensitivities through finite differences, and the only practical means for the calculation of the large number of sensitivities in the context of xVA. The theory and implementation of AAD, the related check-pointing techniques, and their application to Monte-Carlo simulations are explained in numerous textbooks and articles, including Giles and Glasserman's pioneering Smoking Adjoints. We expose an extension to LSM, and, in particular, we derive an original algorithm that resolves the matters of memory consumption and efficiency in differentiating simulations together with the LSM step.
Markov Bridges: SDE representation
Abstract
[[{"fid":"47873","view_mode":"default","fields":{"format":"default"},"type":"media","attributes":{"class":"file media-element file-default"},"link_text":"AD abstract.pdf"}]]