D-modules from the b-function and Hamiltonian flow
Abstract
Given a hypersurface, the Bernstein-Sato polynomial gives deep information about its singularities. It is defined by a D-module (the algebraic formalism of differential equations) closely related to analytic continuation of the gamma function. On the other hand, given a hypersurface (in a Calabi-Yau variety) one can also consider the Hamiltonian flow by divergence-free vector fields, which also defines a D-module considered by Etingof and myself. I will explain how, in the case of quasihomogeneous hypersurfaces with isolated singularities, the two actually coincide. As a consequence I affirmatively answer a folklore question (to which M. Saito recently found a counterexample in the non-quasihomogeneous case): if c$ is a root of the b-function, is the D-module D f^c / D f^{c+1} nonzero? We also compute this D-module, and for c=-1 its length is one more than the genus (conjecturally in the non-quasihomogenous case), matching an analogous D-module in characteristic p. This is joint work with Bitoun.
15:00
STAR-Vote: A Secure, Transparent, Auditable and Reliable Voting System
Abstract
STAR-Vote is voting system that results from a collaboration between a number of
academics and the Travis County, Texas elections office, which currently uses a
DRE voting system and previously used an optical scan voting system. STAR-Vote
represents a rare opportunity for a variety of sophisticated technologies, such
as end-to-end cryptography and risk limiting audits, to be designed into a new
voting system, from scratch, with a variety of real world constraints, such as
election-day vote centers that must support thousands of ballot styles and run
all day in the event of a power failure.
We present and motivate the design of the STAR-Vote system, the benefits that we
expect from it, and its current status.
This is based on joint work with Josh Benaloh, Mike Byrne, Philip Kortum,
Neal McBurnett, Ron Rivest, Philip Stark, Dan Wallach
and the Office of the Travis County Clerk
Global Nonlinear Stability of Minkowski Space for the Massless Einstein-Vlasov System
Abstract
14:30
Cycles in oriented 3-graphs
Abstract
It is easy to see that if a tournament (a complete oriented graph) has a directed cycle then it has a directed 3-cycle. We investigate the analogous question for 3-tournaments, and more generally for oriented 3-graphs.
14:30
Dirac's Theorem for Hypergraphs
Abstract
Cycles are fundamental objects in graph theory. A spanning cycle in a graph is also called a Hamiltonian cycle. The celebrated Dirac's Theorem in 1952 shows that every graph on $n\ge 3$ vertices with minimum degree at least $n/2$ contains a Hamiltonian cycle. In recent years, there has been a strong focus on extending Dirac’s Theorem to hypergraphs. We survey the results along the line and mention some recent progress on this problem. Joint work with Yi Zhao.
14:30
Large deviations in random graphs
Abstract
What is the probability that the number of triangles in an Erdős–Rényi random graph exceeds its mean by a constant factor? In this talk, I will discuss some recent progress on this problem.
Already the order in the exponent of the tail probability was a long standing open problem until several years ago when it was solved by DeMarco and Kahn, and independently by Chatterjee. We now wish to determine the exponential rate of the tail probability. Thanks for the works of Chatterjee--Varadhan (dense setting) and Chatterjee--Dembo (sparse setting), this large deviations problem reduces to a natural variational problem. We solve this variational problem asymptotically, thereby determining the large deviation rate, which is valid at least for p > 1/n^c for some c > 0.
Based on joint work with Bhaswar Bhattacharya, Shirshendu Ganguly, and Eyal Lubetzky.
14:30
Finding structures in random graphs economically
Abstract
We discuss a new setting of algorithmic problems in random graphs, studying the minimum number of queries one needs to ask about the adjacency between pairs of vertices of $G(n,p)$ in order to typically find a subgraph possessing a certain structure. More specifically, given a monotone property of graphs $P$, we consider $G(n,p)$ where $p$ is above the threshold probability for $P$ and look for adaptive algorithms which query significantly less than all pairs of vertices in order to reveal that the property $P$ holds with high probability. In this talk we focus particularly on the properties of containing a Hamilton cycle and containing paths of linear size. The talk is based on joint work with Asaf Ferber, Michael Krivelevich and Benny Sudakov.