Thu, 03 Dec 2015

16:00 - 17:00
L5

Galois theory of periods and applications

Francis Brown
(University of Oxford)
Abstract

A period is a certain type of number obtained by integrating algebraic differential forms over algebraic domains. Examples include pi, algebraic numbers, values of the Riemann zeta function at integers, and other classical constants.
Difficult transcendence conjectures due to Grothendieck suggest that there should be a Galois theory of periods.
I will explain these notions in very introductory terms and show how to set up such a Galois theory in certain situations.
I will then discuss some applications, in particular to Kim's method for bounding $S$-integral solutions to the equation $u+v=1$, and possibly to high-energy physics.

Thu, 26 Nov 2015

16:00 - 17:00
L5

On the Central Limit Theorem for the number of steps in the Euclidean algorithm

Ian Morris
(University of Surrey)
Abstract

The number of steps required by the Euclidean algorithm to find the greatest common divisor of a pair of integers $u,v$ with $1<u<v<n$ has been investigated since at least the 16th century, with an asymptotic for the mean number of steps being found independently by H. Heilbronn and J.D. Dixon in around 1970. It was subsequently shown by D. Hensley in 1994 that the number of steps asymptotically follows a normal distribution about this mean. Existing proofs of this fact rely on extensive effective estimates on the Gauss-Kuzman-Wirsing operator which run to many dozens of pages. I will describe how this central limit theorem can be obtained instead by a much shorter Tauberian argument. If time permits, I will discuss some related work on the number of steps for the binary Euclidean algorithm.

Thu, 19 Nov 2015

16:00 - 17:00
L5

Prime number races with very many competitors

Adam Harper
(University of Cambridge)
Abstract

The prime number race is the competition between different coprime residue classes mod $q$ to contain the most primes, up to a point $x$ . Rubinstein and Sarnak showed, assuming two $L$-function conjectures, that as $x$ varies the problem is equivalent to a problem about orderings of certain random variables, having weak correlations coming from number theory. In particular, as $q \rightarrow \infty$ the number of primes in any fixed set of $r$ coprime classes will achieve any given ordering for $\sim 1/r!$ values of $x$. In this talk I will try to explain what happens when $r$ is allowed to grow as a function of $q$. It turns out that one still sees uniformity of orderings in many situations, but not always. The proofs involve various probabilistic ideas, and also some harmonic analysis related to the circle method. This is joint work with Youness Lamzouri.

Thu, 12 Nov 2015

16:00 - 17:00
L5

Iwasawa theory for the symmetric square of a modular form - Cancelled

Sarah Zerbes
(University College London)
Abstract

I will discuss some new results on the Iwasawa theory for the $3$-dimensional symmetric square Galois representation of a modular form, using the Euler system of Beilinson-Flach elements I constructed in joint work with Kings, Lei and Loeffler.

Thu, 05 Nov 2015

16:00 - 17:00
L5

Around the Möbius function

Kaisa Matomäki
(University of Turku)
Abstract

The Möbius function plays a central role in number theory; both the prime number theorem and the Riemann Hypothesis are naturally formulated in terms of the amount of cancellations one gets when summing the Möbius function. In a recent joint work with Maksym Radziwill we have shown that the sum of the Möbius function exhibits cancellation in "almost all intervals" of arbitrarily slowly increasing length. This goes beyond what was previously known conditionally on the Riemann Hypothesis. Our result holds in fact in much greater generality, and has several further applications, some of which I will discuss in the talk. For instance the general result implies that between a fixed number of consecutive squares there is always an integer composed of only "small" prime factors. This settles a conjecture on "smooth" or "friable" numbers and is related to the running time of Lenstra's factoring algorithm.

Subscribe to