Measurement of Atmospheric Neutrino Oscillations at 6-56 GeV with IceCube DeepCore.
Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Al Samarai, I Altmann, D Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Bagherpour, H Bai, X Barron, J Barwick, S Baum, V Bay, R Beatty, J Becker Tjus, J Becker, K BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Bos, F Bose, D Böser, S Botner, O Bourbeau, J Bradascio, F Braun, J Brayeur, L Brenzke, M Bretz, H Bron, S Brostean-Kaiser, J Burgman, A Carver, T Casey, J Casier, M Cheung, E Chirkin, D Christov, A Clark, K Classen, L Coenders, S Collin, G Conrad, J Cowen, D Cross, R Day, M de André, J De Clercq, C DeLaunay, J Dembinski, H De Ridder, S Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Díaz-Vélez, J di Lorenzo, V Dujmovic, H Dumm, J Dunkman, M Eberhardt, B Ehrhardt, T Eichmann, B Eller, P Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Flis, S Franckowiak, A Friedman, E Fuchs, T Gaisser, T Gallagher, J Gerhardt, L Ghorbani, K Giang, W Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Haack, C Hallgren, A Halzen, F Hanson, K Hebecker, D Heereman, D Helbing, K Hellauer, R Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Hultqvist, K Hünnefeld, M In, S Ishihara, A Jacobi, E Japaridze, G Jeong, M Jero, K Jones, B Kalaczynski, P Kang, W Kappes, A Karg, T Karle, A Katz, U Kauer, M Keivani, A Kelley, J Kheirandish, A Kim, J Kim, M Kintscher, T Kiryluk, J Kittler, T Klein, S Kohnen, G Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koschinsky, J Koskinen, D Kowalski, M Krings, K Kroll, M Krückl, G Kunnen, J Kunwar, S Kurahashi, N Kuwabara, T Kyriacou, A Labare, M Lanfranchi, J Larson, M Lauber, F Lennarz, D Lesiak-Bzdak, M Leuermann, M Liu, Q Lu, L Lünemann, J Luszczak, W Madsen, J Maggi, G Mahn, K Mancina, S Maruyama, R Mase, K Maunu, R McNally, F Meagher, K Medici, M Meier, M Menne, T Merino, G Meures, T Miarecki, S Micallef, J Momenté, G Montaruli, T Moore, R Moulai, M Nahnhauer, R Nakarmi, P Naumann, U Neer, G Niederhausen, H Nowicki, S Nygren, D Obertacke Pollmann, A Olivas, A O'Murchadha, A Palczewski, T Pandya, H Pankova, D Peiffer, P Pepper, J Pérez de Los Heros, C Pieloth, D Pinat, E Plum, M Price, P Przybylski, G Raab, C Rädel, L Rameez, M Rawlins, K Rea, I Reimann, R Relethford, B Relich, M Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Sälzer, T Sanchez Herrera, S Sandrock, A Sandroos, J Sarkar, S Satalecka, K Schlunder, P Schmidt, T Schneider, A Schoenen, S Schöneberg, S Schumacher, L Seckel, D Seunarine, S Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stasik, A Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Sullivan, G Sutherland, M Taboada, I Tatar, J Tenholt, F Ter-Antonyan, S Terliuk, A Tešić, G Tilav, S Toale, P Tobin, M Toscano, S Tosi, D Tselengidou, M Tung, C Turcati, A Turley, C Ty, B Unger, E Usner, M Vandenbroucke, J Van Driessche, W van Eijndhoven, N Vanheule, S van Santen, J Vehring, M Vogel, E Vraeghe, M Walck, C Wallace, A Wallraff, M Wandler, F Wandkowsky, N Waza, A Weaver, C Weiss, M Wendt, C Werthebach, J Westerhoff, S Whelan, B Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woolsey, E Woschnagg, K Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Zoll, M Physical Review Letters volume 120 issue 7 071801-071801 (Feb 2018)

It is an intriguing fact that the 3-dimensional world in which we live is, from a mathematical point of view, rather special. Dimension 3 is very different from dimension 4 and these both have very different theories from that of dimensions 5 and above. The study of space in dimensions 2, 3 and 4 is the field of low-dimensional topology, the research area of Oxford Mathematician Marc Lackenby.

Mon, 13 Nov 2017
16:00
L4

Existence of metrics maximizing the first eigenvalue on closed surfaces

Anna Siffert
(MPI Bonn)
Abstract

We prove that for closed surfaces of fixed topological type, orientable or non-orientable, there exists a unit volume metric, smooth away from finitely many conical singularities, that
maximizes the first eigenvalue of the Laplace operator among all unit volume metrics. The key ingredient are several monotonicity results, which have partially been conjectured to hold before. This
is joint work with Henrik Matthiesen.

Mon, 12 Feb 2018

16:00 - 17:00
L4

Estimates of the distance to the set of divergence free fields and applications to analysis of incompressible viscous flow problems

Sergey Repin
(University of Jyväskylä and Steklov Institute of Mathematics at St Petersburg)
Abstract

We discuss mathematical questions that play a fundamental role in quantitative analysis of incompressible viscous fluids and other incompressible media. Reliable verification of the quality of approximate solutions requires explicit and computable estimates of the distance to the corresponding generalized solution. In the context of this problem, one of the most essential questions is how to estimate the distance (measured in terms of the gradient norm) to the set of divergence free fields. It is closely related to the so-called inf-sup (LBB) condition or stability lemma for the Stokes problem and requires estimates of the LBB constant. We discuss methods of getting computable bounds of the constant and espective estimates of the distance to exact solutions of the Stokes, generalized Oseen, and Navier-Stokes problems.

Thu, 16 Nov 2017

16:00 - 17:30
L3

Multiscale simulation of slow-fast high-dimensional stochastic processes: methods and applications

Giovanni Samaey
(UNIVERSITY OF LEUVEN)
Abstract

We present a framework for the design, analysis and application of computational multiscale methods for slow-fast high-dimensional stochastic processes. We call these processes "microscopic'', and assume existence of an approximate "macroscopic'' model that captures the slow behaviour of a selected set of macroscopic state variables. The methodology combines short bursts of microscopic simulation with extrapolation at the macroscopic level. The methodology requires the careful study of a few key algorithmic ingredients. First, we need to properly initialise the microscopic system, based on a given macroscopic state and (possibly) a prior microscopic state that contains additional information about the system. Second, we need to control the variance of the noise that originates from the microscopic Monte Carlo simulation. Third, we need to analyse stability of the extrapolation step. We will discuss these aspects on two types of model problems -- scale-separated SDEs and kinetic equations -- and show the efficacity of the resulting methods in diverse applications, ranging from tumor growth to fusion energy.

Subscribe to