The maximal Sobolev regularity of distributions supported by arbitrary subsets of R^n
Abstract
Given a subset E of R^n with empty interior, what is the maximum regularity exponent s for which there exist non-zero distributions in the Bessel potential Sobolev space H^s_p(R^n) that are supported entirely inside E? This question has arisen many times in my recent investigations into boundary integral equation formulations of linear wave scattering by fractal screens, and it is closely related to other fundamental questions concerning Sobolev spaces defined on ``rough'' (i.e. non-Lipschitz) domains. Roughly speaking, one expects that the ``fatter'' the set, the higher the maximum regularity that can be supported. For sets of zero Lebesgue measure one can show, using results on certain set capacities from classical potential theory, that the maximum regularity (if it exists) is negative, and is (almost) characterised by the fractal (Hausdorff) dimension of E. For sets with positive measure the maximum regularity (if it exists) is non-negative,but appears more difficult to characterise in terms of geometrical properties of E. I will present some partial results in this direction, which have recently been obtained by studying the asymptotic behaviour of the Fourier transform of the characteristic functions of certain fat Cantor sets.
16:30
Big Bang, Blow Up, and Modular Curves: Algebraic Geometry in Cosmology
Abstract
Based upon our joint work with M. Marcolli, I will introduce some algebraic geometric models in cosmology related to the "boundaries" of space-time: Big Bang, Mixmaster Universe, and Roger Penrose's crossovers between aeons. We suggest to model the kinematics of Big Bang using the algebraic geometric (or analytic) blow up of a point $x$. This creates a boundary which consists of the projective space of tangent directions to $x$ and possibly of the light cone of $x$. We argue that time on the boundary undergoes the Wick rotation and becomes purely imaginary. The Mixmaster (Bianchi IX) model of the early history of the universe is neatly explained in this picture by postulating that the reverse Wick rotation follows a hyperbolic geodesic connecting imaginary time axis to the real one. Roger Penrose's idea to see the Big Bang as a sign of crossover from "the end of the previous aeon" of the expanding and cooling Universe to the "beginning of the next aeon" is interpreted as an identification of a natural boundary of Minkowski space at infinity with the Bing Bang boundary.
Viktor Mayer-Schonberger's Inaugural Oxford-Nie Financial Big Data Laboratory lecture is now online. We should welcome Big Data he argues and all the opportunities it brings, but we should also approach it with humility and humanity.
Viktor Mayer-Schonberger is Professor of Internet Governance and Regulation at the University of Oxford's Internet Institute. The Oxford-Nie Financial Big Data Laboratory was made possible by the generous support of Financial Data Technologies Ltd and is located in the Mathematical Institute in Oxford.
Professor Martin Bridson, Whitehead Professor of Mathematics, Vice Chairman of the Mathematical Institute and Fellow of Magdalen College, has been elected to the American Mathematical Society “for contributions to geometric group theory as well as its exposition, and for service to the mathematical community.” In addition to geometric group theory, Martin's
14:15
An Abundance of K3 Fibrations and the Structure of the Landscape
Abstract
Even a cursory inspection of the Hodge plot associated with Calabi-Yau threefolds that are hypersurfaces in toric varieties reveals striking structures. These patterns correspond to webs of elliptic K3 fibrations whose mirror images are also elliptic K3 fibrations. Such manifolds arise from reflexive polytopes that can be cut into two parts along slices corresponding to the K3 fibers. Any two half-polytopes over a given slice can be combined into a reflexive polytope. This fact, together with a remarkable relation on the additivity of Hodge numbers, explains much of the structure of the observed patterns.