Thu, 16 May 2024

17:00 - 18:00
L3

Some model theory of Quadratic Geometries

Charlotte Kestner
(Imperial College London)
Abstract
I will introduce the theories of orthogonal spaces and quadratic geometries over infinite fields, giving some background on Lie coordinatisable structures, and bilinear forms over infinite fields. I will then go on to explain the quantifier elimination for these structures, and discuss the axiomatisation of their pseudo-finite completions and model companions.  This is joint work in progress with Nick Ramsey.


 

When should lockdown be implemented? Devising cost-effective strategies for managing epidemics amid vaccine uncertainty
Doyle, N Cumming, F Thompson, R Tildesley, M (2024)
Mon, 27 May 2024
16:00
L2

Special values of L-functions

Aleksander Horawa
(University of Oxford)
Abstract

In 1735, Euler observed that $ζ(2) = 1 + \frac{1}{2²} + \frac{1}{3²} + ⋯ = \frac{π²}{6}$. This is related to the famous identity $ζ(−1) "=" 1 + 2 + 3 + ⋯ "=" \frac{−1}{12}$. In general, values of the Riemann zeta function at positive even integers are equal to rational numbers multiplied by a power of $π$. The values at positive odd integers are much more mysterious; for example, Apéry proved that $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ⋯$ is irrational, but we still don't know if $ζ(5) = 1 + \frac{1}{2⁵} + \frac{1}{3⁵} + ⋯$ is rational or not! In this talk, we will explain the arithmetic significance of these values, their generalizations to Dirichlet/Dedekind L−functions, and to L−functions of elliptic curves. We will also present a new formula for $ζ(3) = 1 + \frac{1}{2³} + \frac{1}{3³} + ...$ in terms of higher algebraic cycles which came out of an ongoing project with Lambert A'Campo.

Mon, 10 Jun 2024
16:00
L2

Duffin-Schaeffer meets Littlewood - a talk on metric Diophantine approximation

Manuel Hauke
(University of York)
Abstract

Khintchine's Theorem is one of the cornerstones in metric Diophantine approximation. The question of removing the monotonicity condition on the approximation function in Khintchine's Theorem led to the recently proved Duffin-Schaeffer conjecture. Gallagher showed an analogue of Khintchine's Theorem for multiplicative Diophantine approximation, again assuming monotonicity. In this talk, I will discuss my joint work with L. Frühwirth about a Duffin-Schaeffer version for Gallagher's Theorem. Furthermore, I will give a broader overview on various questions in metric Diophantine approximation and demonstrate the deep connection to both analytic and combinatorial number theory that is hidden inside the proof of these statements.

Mon, 13 May 2024
16:00
L2

Eigenvarieties and p-adic propagation of automorphy

Zachary Feng
(University of Oxford)
Abstract

Functoriality is a key feature in Langlands’ conjectured relationship between automorphic representations and Galois representations; it predicts that certain Galois representations are automorphic, i.e. should come from automorphic representations. We discuss the idea of $p$-adic propagation of automorphy, which seeks to establish the automorphy of everything in a “neighborhood” given the automorphy of something in that neighborhood. The “neighborhoods” that we consider will be the irreducible components of a $p$-adic analytic space called the eigenvariety, which parameterizes $p$-adic automorphic representations. This technique was introduced by Newton and Thorne in their proof of symmetric power functoriality, and can be adapted to investigate similar problems.

Testing structural balance theories in heterogeneous signed networks
Gallo, A Garlaschelli, D Lambiotte, R Saracco, F Squartini, T Communications Physics volume 7 issue 1 (13 May 2024)
On the Class $\mathcal{S}$ Origin of Spindle Solutions
Bomans, P Couzens, C (11 Apr 2024)
The selective prolyl hydroxylase inhibitor IOX5 stabilizes HIF-1α and compromises development and progression of acute myeloid leukemia
Lawson, H Holt-Martyn, J Dembitz, V Kabayama, Y Wang, L Bellani, A Atwal, S Saffoon, N Durko, J van de Lagemaat, L De Pace, A Tumber, A Corner, T Salah, E Arndt, C Brewitz, L Bowen, M Dubusse, L George, D Allen, L Guitart, A Fung, T So, C Schwaller, J Gallipoli, P O'Carroll, D Schofield, C Kranc, K Nature Cancer (18 Apr 2024)
Tue, 21 May 2024

10:30 - 17:30
L3

One-Day Meeting in Combinatorics

Multiple
Further Information

The speakers are Carla Groenland (Delft), Shoham Letzter (UCL), Nati Linial (Hebrew University of Jerusalem), Piotr Micek (Jagiellonian University), and Gabor Tardos (Renyi Institute). Please see the event website for further details including titles, abstracts, and timings. Anyone interested is welcome to attend, and no registration is required.

Subscribe to