Mon, 22 Apr 2024

13:00 - 14:00
N3.12

Mathematrix: Taboo Topics

Abstract

Join us for our first event of term to discuss those topics which are slightly taboo. We’ll be talking about periods, pregnancy, chronic illness, gender identity... This event is open to all but we will be taking extra steps to make sure it is a safe space for everyone. 

Stability of the Epstein-Zin problem
Monoyios, M Mostovyi, O Mathematical Finance volume 34 issue 4 1263-1290 (24 May 2024)
Thu, 25 Apr 2024

17:00 - 18:00
L3

Bi-interpretability and elementary definability of Chevalley groups

Elena Bunina
(Bar-Ilan University)
Abstract

We prove that any adjoint Chevalley group over an arbitrary commutative ring is regularly bi-interpretable with this ring. The same results hold for central quotients of arbitrary Chevalley groups and for Chevalley groups with bounded generation.
Also, we show that the corresponding classes of Chevalley groups (or their central quotients) are elementarily definable and even finitely axiomatizable.

Thu, 02 May 2024
16:00
Lecture Room 4, Mathematical Institute

Twisted correlations of the divisor function via discrete averages of $\operatorname{SL}_2(\mathbb{R})$ Poincaré series

Jori Merikoski
(University of Oxford)
Abstract

The talk is based on joint work with Lasse Grimmelt. We prove a theorem that allows one to count solutions to determinant equations twisted by a periodic weight with high uniformity in the modulus. It is obtained by using spectral methods of $\operatorname{SL}_2(\mathbb{R})$ automorphic forms to study Poincaré series over congruence subgroups while keeping track of interactions between multiple orbits. This approach offers increased flexibility over the widely used sums of Kloosterman sums techniques. We give applications to correlations of the divisor function twisted by periodic functions and the fourth moment of Dirichlet $L$-functions on the critical line.

Mon, 20 May 2024
16:00
L2

Inhomogeneous multiplicative diophantine approximation

Kate Thomas
(University of Oxford)
Abstract

Introducing an inhomogeneous shift allows for generalisations of many multiplicative results in diophantine approximation. In this talk, we discuss an inhomogeneous version of Gallagher's theorem, established by Chow and Technau, which describes the rates for which we can approximate a typical product of fractional parts. We will sketch the methods used to prove an earlier version of this result due to Chow, using continued fraction expansions and geometry of numbers to analyse the structure of Bohr sets and bound sums of reciprocals of fractional parts.

Sig-networks toolkit: signature networks for longitudinal language modelling
Tseriotou, T Chan, R Tsakalidis, A Bilal, I Kochkina, E Lyons, T Liakata, M Proceedings of the 18th Conference of the European Chapter of the Association for Computational Linguistics: System Demonstrations (EACL 2024) 223-237 (22 Mar 2024)
Fri, 14 Jun 2024

15:00 - 16:00
L5

The bifiltration of a relation, extended Dowker duality and studying neural representations

Melvin Vaupel
(Norweign University of Science and Technology)
Abstract

To neural activity one may associate a space of correlations and a space of population vectors. These can provide complementary information. Assume the goal is to infer properties of a covariate space, represented by ochestrated activity of the recorded neurons. Then the correlation space is better suited if multiple neural modules are present, while the population vector space is preferable if neurons have non-convex receptive fields. In this talk I will explain how to coherently combine both pieces of information in a bifiltration using Dowker complexes and their total weights. The construction motivates an interesting extension of Dowker’s duality theorem to simplicial categories associated with two composable relations, I will explain the basic idea behind it’s proof.

Fri, 24 May 2024

15:00 - 16:00
L5

Applying stratified homotopy theory in TDA

Lukas Waas
(Univeristy of Heidelberg)
Abstract

 

The natural occurrence of singular spaces in applications has led to recent investigations on performing topological data analysis (TDA) on singular data sets. However, unlike in the non-singular scenario, the homotopy type (and consequently homology) are rather course invariants of singular spaces, even in low dimension. This suggests the use of finer invariants of singular spaces for TDA, making use of stratified homotopy theory instead of classical homotopy theory.
After an introduction to stratified homotopy theory, I will describe the construction of a persistent stratified homotopy type obtained from a sample with two strata. This construction behaves much like its non-stratified counterpart (the Cech complex) and exhibits many properties (such as stability, and inference results) necessary for an application in TDA.
Since the persistent stratified homotopy type relies on an already stratified point-cloud, I will also discuss the question of stratification learning and present a convergence result which allows one to approximately recover the stratifications of a larger class of two-strata stratified spaces from sufficiently close non-stratified samples. In total, these results combine to a sampling theorem guaranteeing the (approximate) inference of (persistent) stratified homotopy types from non-stratified samples for many examples of stratified spaces arising from geometrical scenarios.

Subscribe to