Fri, 24 May 2024

15:00 - 16:00
L5

Applying stratified homotopy theory in TDA

Lukas Waas
(Univeristy of Heidelberg)
Abstract

 

The natural occurrence of singular spaces in applications has led to recent investigations on performing topological data analysis (TDA) on singular data sets. However, unlike in the non-singular scenario, the homotopy type (and consequently homology) are rather course invariants of singular spaces, even in low dimension. This suggests the use of finer invariants of singular spaces for TDA, making use of stratified homotopy theory instead of classical homotopy theory.
After an introduction to stratified homotopy theory, I will describe the construction of a persistent stratified homotopy type obtained from a sample with two strata. This construction behaves much like its non-stratified counterpart (the Cech complex) and exhibits many properties (such as stability, and inference results) necessary for an application in TDA.
Since the persistent stratified homotopy type relies on an already stratified point-cloud, I will also discuss the question of stratification learning and present a convergence result which allows one to approximately recover the stratifications of a larger class of two-strata stratified spaces from sufficiently close non-stratified samples. In total, these results combine to a sampling theorem guaranteeing the (approximate) inference of (persistent) stratified homotopy types from non-stratified samples for many examples of stratified spaces arising from geometrical scenarios.

Fri, 26 Apr 2024

15:00 - 16:00
L5

Lagrangian Hofer metric and barcodes

Patricia Dietzsch
(ETH Zurich)
Further Information

Patricia is a Postdoc in Mathematics at ETH Zürich, having recently graduated under the supervision of Prof. Paul Biran.

Patricia is working in the field of symplectic topology. Some key words in her current research project are: Dehn twist, Seidel triangle, real Lefschetz fibrations and Fukaya categories. Besides this, she is a big fan of Hofer's metric, expecially of the Lagrangian Hofer metric and the many interesting open questions related to it. 

Abstract

 

This talk discusses an application of Persistence Homology in the field of Symplectic Topology. A major tool in Symplectic Topology are Floer homology groups. These are algebraic invariants that can be associated to pairs of Lagrangian submanifolds. A richer algebraic invariant can be obtained using 
filtered Lagrangian Floer theory. This gives rise to a persistence module and a barcode. Its bar lengths are invariants for the pair of Lagrangians. 
 
We explain how these numbers can be used to estimate the Lagrangian Hofer distance between the two Lagrangians: It is a well-known stability result  that the bar lengths are lower bounds of the distance. We show how to get an upper bound of the distance in terms of the bar lengths in the special case of equators in a cylinder.
Mon, 22 Apr 2024
14:15
L4

Refined Harder-Narasimhan filtrations in moduli theory

Andres Ibanez-Nunez
(Oxford)
Abstract

We introduce a notion of refined Harder-Narasimhan filtration, defined abstractly for algebraic stacks satisfying natural conditions. Examples include moduli stacks of objects at the heart of a Bridgeland stability condition, moduli stacks of K-semistable Fano varieties, moduli of principal bundles on a curve, and quotient stacks. We will explain how refined Harder-Narasimhan filtrations are closely related both to stratifications and to the asymptotics of certain analytic flows, relating and expanding work of Kirwan and Haiden-Katzarkov-Kontsevich-Pandit, respectively. In the case of quotient stacks by the action of a torus, the refined Harder-Narasimhan filtration can be computed in terms of convex geometry.

Fri, 07 Jun 2024

12:00 - 13:15
L3

Symmetry, topology and entanglement in the chiral clock family

Nick Jones
(St John's College)
Abstract

Global symmetries greatly enrich the phase diagram of quantum many-body systems. As well as symmetry-breaking phases, symmetry-protected topological (SPT) phases have symmetric ground states that cannot be connected to a trivial state without a phase transition. There can also be symmetry-enriched critical points between these phases of matter. I will demonstrate these phenomena in phase diagrams constructed using the N-state chiral clock family of spin chains.  [Based on joint work with Paul Fendley and Abhishodh Prakash.]

Fri, 10 May 2024

12:00 - 13:15
L3

Chiralization of cluster structures

Mikhail Bershstein
(University of Edinburgh)
Abstract

The chiralization in the title denotes a certain procedure which turns cluster X-varieties into q-W algebras. Many important notions from cluster and q-W worlds, such as mutations, global functions, screening operators, R-matrices, etc emerge naturally in this context. In particular, we discover new bosonizations of q-W algebras and establish connections between previously known bosonizations. If time permits, I will discuss potential applications of our approach to the study of 3d topological theories and local systems with affine gauge groups. This talk is based on a joint project with J. Shiraishi, J.E. Bourgine, B. Feigin, A. Shapiro, and G. Schrader.

Fri, 26 Apr 2024

12:00 - 13:15
L3

On Spectral Data for (2,2) Berry Connections, Difference Equations, and Equivariant Quantum Cohomology

Daniel Zhang
(St John's College)
Abstract

We study supersymmetric Berry connections of 2d N = (2,2) gauged linear sigma models (GLSMs) quantized on a circle, which are periodic monopoles, with the aim to provide a fruitful physical arena for recent mathematical constructions related to the latter. These are difference modules encoding monopole solutions via a Hitchin-Kobayashi correspondence established by Mochizuki. We demonstrate how the difference modules arises naturally by studying the ground states as the cohomology of a one-parameter family of supercharges. In particular, we show how they are related to one kind of monopole spectral data, a deformation of the Cherkis–Kapustin spectral curve, and relate them to the physics of the GLSM. By considering states generated by D-branes and leveraging the difference modules, we derive novel difference equations for brane amplitudes. We then show that in the conformal limit, these degenerate into novel difference equations for hemisphere partition functions, which are exactly calculable. When the GLSM flows to a nonlinear sigma model with Kähler target X, we show that the difference modules are related to deformations of the equivariant quantum cohomology of X.

A joint image encryption based on a memristive Rulkov neuron with controllable multistability and compressive sensing
Li, Y Li, C Moroz, I Yang, Y Chaos Solitons & Fractals volume 182 114800 (May 2024)
Fri, 24 May 2024

12:00 - 13:00
Quillen Room

Young wall realizations for representations of (affine) quantum groups

Duncan Laurie
(University of Oxford)
Abstract

Kashiwara’s theory of crystal bases provides a powerful tool for studying representations of quantum groups. Crystal bases retain much of the structural information of their corresponding representations, whilst being far more straightforward and ‘stripped-back’ objects (coloured digraphs). Their combinatorial description often enables us to obtain concrete realizations which shed light on the representations, and moreover turn challenging questions in representation theory into far more tractable problems.

After reviewing the construction and basic theory regarding quantum groups, I will introduce and motivate crystal bases as ‘nice q=0 bases’ for their representations. I shall then present (in both finite and affine types) the construction of Young wall models in the important case of highest weight representations. Time permitting, I will finish by discussing some applications across algebra and geometry.

Mon, 13 May 2024
14:15
L4

Quadratic Euler characteristics of singular varieties

Simon Pepin Lehalleur
(KdV Institute, Amsterdam)
Abstract

The quadratic Euler characteristic of an algebraic variety is a (virtual) symmetric bilinear form which refines the topological Euler characteristic and contains interesting arithmetic information when the base field is not algebraically closed. For smooth projective varieties, it has a quite concrete expression in terms of the cup product and Serre duality for Hodge cohomology. However, for singular varieties, it is defined abstractly (using either cut and paste relations or motivic homotopy theory) and is still rather mysterious. I will first introduce this invariant and place it in the broader context of quadratic enumerative geometry. I will then explain some progress on concrete computations, first for symmetric powers (joint with Lenny Taelman) and second for conductor formulas for hypersurface singularities (older results with Marc Levine and Vasudevan Srinivas on the one hand, and joint work in progress with Ran Azouri, Niels Feld, Yonathan Harpaz and Tasos Moulinos on the other).

Subscribe to