Proof of the Deligne—Milnor conjecture
Abstract
Let X --> S be a family of algebraic varieties parametrized by an infinitesimal disk S, possibly of mixed characteristic. The Bloch conductor conjecture expresses the difference of the Euler characteristics of the special and generic fibers in algebraic and arithmetic terms. I'll describe a proof of some new cases of this conjecture, including the case of isolated singularities. The latter was a conjecture of Deligne generalizing Milnor's formula on vanishing cycles.
This is joint work with Massimo Pippi; our methods use derived and non-commutative algebraic geometry.
A recursive formula for plethysm coefficients and some applications
Abstract
Plethysms lie at the intersection of representation theory and algebraic combinatorics. We give a recursive formula for a family of plethysm coefficients encompassing those involved in Foulkes' Conjecture. We also describe some applications, such as to the stability of plethysm coefficients and Sylow branching coefficients for symmetric groups. This is joint work with Y. Okitani.
Blocks of modular representations of p-adic groups
Abstract
Let G be the points of a reductive group over a p-adic field. According to Bernstein, the category of smooth complex representations of G decomposes as a product of indecomposable subcategories (blocks), each determined by inertial supercuspidal support. Moreover, each of these blocks is equivalent to the category of modules over a Hecke algebra, which is understood in many (most) cases. However, when the coefficients of the representations are now allowed to be in a more general ring (in which p is invertible), much of this fails in general. I will survey some of what is known, and not known.
Homotopy in Cuntz classes of Z-stable C*-algebras
Abstract
The Cuntz semigroup of a C*-algebra is an ordered monoid consisting of equivalence classes of positive elements in the stabilization of the algebra. It can be thought of as a generalization of the Murray-von Neumann semigroup, and records substantial information about the structure of the algebra. Here we examine the set of positive elements having a fixed equivalence class in the Cuntz semigroup of a simple, separable, exact and Z-stable C*-algebra and show that this set is path connected when the class is non-compact, i.e., does not correspond to the class of a projection in the C*-algebra. This generalizes a known result from the setting of real rank zero C*-algebras.
Two Oxford Mathematicians, Andrew Wiles and Marc Lackenby, have received Basic Science and Frontiers of Science awards.
Andrew receives a Basic Science Lifetime Award both for his famous proving of Fermat's Last Theorem and its subsequent influence on the development of the field, and for the inspiration he has provided to many aspiring mathematicians.