Mon, 22 Apr 2024
15:30
L5

Examples of topologically unknotted tori

Andras Juhasz
((Oxford University))
Abstract

I will discuss three different constructions of smooth tori in S^4 whose complements have fundamental group Z: turned 1-twist-spun tori due to Boyle, the union of a ribbon disc with a genus one Seifert surface constructed by Cochran and Davis, and certain tori with four critical points. They are all topologically unknotted, but it is not known whether they are smoothly standard, except for tori with four critical points whose middle level set is a split link. The branched double cover of S^4 along any of these surfaces is a potentially exotic copy of S^2 x S^2, though, in the case of Boyle's example, it cannot be distinguished from the standard S^2 x S^2 using Seiberg-Witten invariants. This is joint work with Mark Powell.

'The Harder They Come' is a 1972 Jamaican crime film that achieved international success and played a major role in bringing reggae to a wider audience. Ska and reggae artist Jimmy Cliff was its star and this is the title track.

Mon, 06 May 2024
14:15
L4

Singularities of fully nonlinear geometric flows

Stephen Lynch
((Imperial College)
Abstract
We will discuss the evolution of hypersurfaces by fully nonlinear geometric flows. These are cousins of the mean curvature flow which can be tailored to preserve different features of the underlying hypersurface geometry. Solutions often form singularities. I will present new classification results for blow-ups of singularities which confirm the expectation that these are highly symmetric and hence rigid. I will explain how this work fits into a broader program aimed at characterising Riemannian manifolds with positively curved boundaries.



 

Tue, 23 Apr 2024

16:00 - 17:00
C2

Gauge-invariant ideal structure of C*-algebras associated with strong compactly aligned product systems

Joseph Dessi
(Newcastle University)
Abstract

Product systems represent powerful contemporary tools in the study of mathematical structures. A major success in the theory came from Katsura (2007), who provided a complete description of the gauge-invariant ideals of many important C*-algebras arising from product systems over Z+. This result recaptures existing results from the literature, illustrating the versatility of product system theory. The question now becomes whether or not Katsura's result can be bolstered to product systems over semigroups other than Z+ and, if so, what applications do we obtain? An answer has been elusive, owing to the more pathological nature of product systems over general semigroups. However, recent strides by Dor-On and Kakariadis (2018) supply a more tractable subclass of product systems that still includes the important cases of C*-dynamics, row-finite higher-rank graphs, and regular product systems. 

In this talk we will build a parametrisation of the gauge-invariant ideals, starting from first principles and gradually increasing in complexity. We will pay particular attention to the higher-rank subtleties that are not witnessed in Katsura's theorem, and comment on the applications.
 

Tue, 28 May 2024

16:00 - 17:00
C2

W*-superrigidity for cocycle twisted group von Neumann algebras

Milan Donvil
(KU Leuven)
Abstract

A group is called W*-superrigid if its group von Neumann algebra completely remembers the original group. In this talk, I will present a recent joint work with Stefaan Vaes in which we generalize W*-superrigidity for groups in two directions. Firstly, we find a class of groups for which W*-superrigidity holds in the presence of a twist by an arbitrary 2-cocycle: the twisted group von Neumann algebra completely remembers both the original group and the 2-cocycle. Secondly, for the same class of groups, the superrigidity also holds up to virtual isomorphism.

Introduction to CTA Science
Hinton, J Ong, R Torres, D Science with the Cherenkov Telescope Array 1-25 (06 Feb 2019)
Search for the rare interactions of neutrinos from distant point sources
with IceCube Neutrino Telescope
Kang, W Rott, C (05 Aug 2023) http://arxiv.org/abs/2308.02842v2
Subscribe to