Faithfulness of highest-weight modules for Iwasawa algebras
Abstract
Iwasawa algebras are completions of group algebras for p-adic Lie groups, and have applications for studying the representations of these groups. It is an ongoing project to study the prime ideals, and more generally the two-sided ideals, of these algebras.
In the case of Iwasawa algebras corresponding to a simple Lie algebra with a Chevalley basis, we aim to prove that all non-zero two-sided ideals have finite codimension. To prove this, it is sufficient to show faithfulness of modules arising from highest-weight modules for the corresponding Lie algebra.
I have proved two main results in this direction: firstly, I proved the faithfulness of generalised Verma modules over the Iwasawa algebra. Secondly, I proved the faithfulness of all infinite-dimensional highest-weight modules in the case where the Lie algebra has type A. In this talk, I will outline the methods I used to prove these cases.
Equivariant vector bundles with connection on the p-adic half-plane
Abstract
Recent joint work with Konstantin Ardakov has been devoted to classifying equivariant line bundles with flat connection on the Drinfeld p-adic half-plane defined over F, a finite extension of Q_p, and proving that their global sections yield admissible locally analytic representations of GL_2(F) of finite length. In this talk we will discuss this work and invite reflection on how it might be extended to equivariant vector bundles with connection on the p-adic half-plane and, if time permits, to higher dimensional analogues of the half-plane.
A potpourri of pretty identities involving Catalan, Fibonacci and trigonometric numbers
Abstract
Apart from the binomial coefficients which are ubiquitous in many counting problems, the Catalan and Fibonacci sequences seem to appear almost as frequently. There are also well-known interpretations of the Catalan numbers as lattice paths, or as the number of ways of connecting 2n points on a circle via non-intersecting lines. We start by obtaining some identities for sums involving the Catalan sequence. In addition, we use the beautiful binomial transform which allows us to obtain several pretty identities involving Fibonacci numbers, Catalan numbers, and trigonometric sums.