Tue, 31 Oct 2023
16:00 -
17:00
L6
Bounding the Large Deviations in Selberg's Central Limit Theorem
Louis-Pierre Arguin
(University of Oxford)
Abstract
It was proved by Selberg's in the 1940's that the typical values of the logarithm of the Riemann zeta function on the critical line is distributed like a complex Gaussian random variable. In this talk, I will present recent work with Emma Bailey that extends the Gaussian behavior for the real part to the large deviation regime. This gives a new proof of unconditional upper bounds of the $2k$-moments of zeta for $0\leq k\leq 2$, and lower bounds for $k>0$. I will also discuss the connections with random matrix theory and with the Moments Conjecture of Keating & Snaith.