Fri, 20 May 2022

14:00 - 15:00
L4

Multiscale Image Based Modelling of Plant-Soil Interaction

Tiina Roose
(University of Southampton)
Abstract

We rely on soil to support the crops on which we depend. Less obviously we also rely on soil for a host of 'free services' from which we benefit. For example, soil buffers the hydrological system greatly reducing the risk of flooding after heavy rain; soil contains very large quantities of carbon, which would otherwise be released into the atmosphere where it would contribute to climate change. Given its importance it is not surprising that soil, especially its interaction with plant roots, has been a focus of many researchers. However the complex and opaque nature of soil has always made it a difficult medium to study. 

In this talk I will show how we can build a state of the art image based model of the physical and chemical properties of soil and soil-root interactions, i.e., a quantitative, model of the rhizosphere based on fundamental scientific laws.
This will be realised by a combination of innovative, data rich fusion of structural and chemical imaging methods, integration of experimental efforts to both support and challenge modelling capabilities at the scale of underpinning bio-physical processes, and application of mathematically sound homogenisation/scale-up techniques to translate knowledge from rhizosphere to field scale. The specific science questions I will address with these techniques are: (1) how does the soil around the root, the rhizosphere, function and influence the soil ecosystems at multiple scales, (2) what is the role of root- soil interface micro morphology on plant nutrient uptake, (3) what is the effect of plant exuded mucilage on the soil morphology, mechanics and resulting field and ecosystem scale soil function and (4) how to translate this knowledge from the single root scale to root system, field and ecosystem scale in order to predict how the climate change, different soil management strategies and plant breeding will influence the soil fertility. 

Fri, 27 May 2022

10:00 - 11:00
L4

Inference of risk-neutral joint-distributions in commodity markets using neural-networks

Andy Ho, Vincent Guffens
(Macquarie Group(1585))
Abstract

The questions we would like to answer are as follows:

  1. Given three distributions pdf1, pdf2 and pdf-so, is it always possible to find a joint-distribution consistent with those 3 one-dimensional distributions?
  2. Assuming that we are in a situation where (1) holds, can we find a nonparametric joint-distribution consistent with the 3 given one-dimensional distributions?
  3. If (2) leads to an under-determined problem, can we find a joint-distribution that is “as close as possible” to the historical joint distribution?
  4. Can we achieve (3) with a neural network?
  5. If we observe the marginal and spread distributions for multiple maturities T, can we specify the evolution of pdf(T), possibly using neural differential equations?
Fri, 06 May 2022

10:00 - 11:00
L4

Using advanced mathematical methods for improving our domestic lives

Graham Anderson and Konstantinos Pantelidis
(Beko)
Further Information

Whilst domestic appliances or white goods are a standard product in our everyday lives, the technology areas that have been developed to achieve high performance and efficiency at low cost are numerous.  Beko’s parent company, Arcelik, have a research campus that includes teams working on fluid dynamics, thermodynamics, materials science, data analytics, IOT, electronics amongst many others. 

Abstract

 

We would like to share two challenges that, if solved, could improve our domestic lives.  

 Firstly, having appliances that are as unobtrusive as possible is a strong desire, unwanted noise can cause a negative impact on relaxation.  A key target for refrigerators is low sound level, a key noise source is the capillary tube.  The capillary tube effects the phase change that is required for the refrigerant to be in the gaseous state in the evaporator for cooling.  Noise is generated during this process due to two phases being present within the flow through the tube.  The challenge is to create a numerical model and analysis of refrigerant flow properties in order to estimate the acoustic behaviour.

 Secondly, we would like to maximise the information that can be gathered from our new range of connected devices.  By analysing the data generated during usage we would like to be able to predict faults and understand user behaviour in more detail.  The challenge regarding fault prediction is the scarcity of the failure data and the impact of false positives.  Due to the number of units in the field, a relatively small fraction of false positives can remove the ROI from such an initiative.  We would like to understand if advanced machine learning methods can be used to reduce this risk.

Polynomial bounds for chromatic number II: Excluding a star-forest
Scott, A Seymour, P Spirkl, S Journal of Graph Theory volume 101 issue 2 318-322 (01 Oct 2022)
Tue, 10 May 2022

16:00 - 17:00
C1

Representing the string 2-group on Clifford von Neumann algebras.

Peter Kristel
(University of Manitoba)
Abstract

The string 2-group is a fundamental object in string geometry, which is a refinement of spin geometry required to describe the spinning string. While many models for the string 2-group exist, the construction of a representation for it is new. In this talk, I will recall the notion of strict 2-group, and then give two examples: the automorphism 2-group of a von Neumann algebra, and the string 2-group. I will then describe the representation of the string 2-group on the hyperfinite III_1 factor, which is a functor from the string 2-group to the automorphism 2-group of the hyperfinite III_1 factor.

Tue, 07 Jun 2022

14:00 - 15:00
L6

How to restrict representations from a complex reductive group to a real form

Lucas Mason-Brown
((Oxford University))
Abstract

Let G(R) be the real points of a complex reductive algebraic group G. There are many difficult questions about admissible representations of real reductive groups which have (relatively) easy answers in the case of complex groups. Thus, it is natural to look for a relationship between representations of G and representations of G(R). In this talk, I will introduce a functor from admissible representations of G to admissible representations of G(R). This functor interacts nicely with many natural invariants, including infinitesimal character, associated variety, and restriction to a maximal compact subgroup, and it takes unipotent representations of G to unipotent representations of G(R).

Tue, 14 Jun 2022

14:00 - 15:00
L6

Invariable generation and totally deranged elements of simple groups

Scott Harper
(Bristol)
Abstract

By a classical theorem of Jordan, every faithful transitive action of a nontrivial finite group admits a derangement (an element with no fixed points). More recently, the existence of derangements with additional properties has attracted much attention, especially for primitive actions of almost simple groups. Surprisingly, there exist almost simple groups with elements that are derangements in every faithful primitive action; we say that these elements are totally deranged. I'll talk about ongoing work to classify the totally deranged elements of almost simple groups, and I'll mention how this solves a question of Garzoni about invariable generating sets for simple groups.

Tue, 24 May 2022

15:30 - 16:30
L6

On centralizers in Azumaya domains

Thomas Bitoun
(University of Calgary)
Abstract

We prove a positive characteristic analogue of the classical result that the centralizer of a nonconstant differential operator in one variable is commutative. This leads to a new, short proof of that classical characteristic zero result, by reduction modulo p. This is joint work with Justin Desrochers available at https://arxiv.org/abs/2201.04606.

Subscribe to