Tue, 14 Jun 2022

14:00 - 14:30
L5

The strain Hodge Laplacian and DGFEM for the incompatibility operator

Francis Aznaran
((Oxford University))
Abstract

Motivated by the physical relevance of many Hodge Laplace-type PDEs from the finite element exterior calculus, we analyse the Hodge Laplacian boundary value problem arising from the strain space in the linear elasticity complex, an exact sequence of function spaces naturally arising in several areas of continuum mechanics. We propose a discretisation based on the adaptation of discontinuous Galerkin FEM for the incompatibility operator $\mathrm{inc} := \mathrm{rot}\circ\mathrm{rot}$, using the symmetric-tensor-valued Regge finite element to discretise  the strain field; via the 'Regge calculus', this element has already been successfully applied to discretise another metric tensor, namely that arising in general relativity. Of central interest is the characterisation of the associated Sobolev space $H(\mathrm{inc};\mathbb{R}^{d\times d}_{\mathrm{sym}})$. Building on the pioneering work of van Goethem and coauthors, we also discuss promising connections between functional analysis of the $\mathrm{inc}$ operator and Kröner's theory of intrinsic elasticity in the presence of defects.

This is based on ongoing work with Dr Kaibo Hu.

Tue, 31 May 2022

14:30 - 15:00
L1

Randomized algorithms for Tikhonov regularization in linear least squares

Maike Meier
((Oxford University))
Abstract

Regularization of linear least squares problems is necessary in a variety of contexts. However, the optimal regularization parameter is usually unknown a priori and is often to be determined in an ad hoc manner, which may involve solving the problem for multiple regularization parameters. In this talk, we will discuss three randomized algorithms, building on the sketch-and-precondition framework in randomized numerical linear algebra (RNLA), to efficiently solve this set of problems. In particular, we consider preconditioners for a set of Tikhonov regularization problems to be solved iteratively. The first algorithm is a Cholesky-based algorithm employing a single sketch for multiple parameters; the second algorithm is SVD-based and improves the computational complexity by requiring a single decomposition of the sketch for multiple parameters. Finally, we introduce an algorithm capable of exploiting low-rank structure (specifically, low statistical dimension), requiring a single sketch and a single decomposition to compute multiple preconditioners with low-rank structure. This algorithm avoids the Gram matrix, resulting in improved stability as compared to related work.

Tue, 31 May 2022

14:00 - 14:30
L1

Reinforcement learning for time-optimal vehicle control

Christoph Hoeppke
((Oxford University))
Abstract

Time-optimal control can be used to improve driving efficiency for autonomous
vehicles and it enables us explore vehicle and driver behaviour in extreme
situations. Due to the computational cost and limited scope of classical
optimal control methods we have seen new interest in applying reinforcement
learning algorithms to autonomous driving tasks.
In this talk we present methods for translating time-optimal vehicle control
problems into reinforcement learning environments. For this translation we
construct a sequence of environments, starting from the closest representation
of our optimisation problem, and gradually improve the environments reward
signal and feature quality. The trained agents we obtain are able to generalise
across different race tracks and obtain near optimal solutions, which can then
be used to speed up the solution of classical time-optimal control problems.

Tue, 17 May 2022

14:30 - 15:00
L1

Optimal control of bifurcation structures

Nicolas Boulle
((Oxford University))
Abstract

Many problems in engineering can be understood as controlling the bifurcation structure of a given device. For example, one may wish to delay the onset of instability, or bring forward a bifurcation to enable rapid switching between states. In this talk, we will describe a numerical technique for controlling the bifurcation diagram of a nonlinear partial differential equation by varying the shape of the domain or a parameter in the equation. Our aim is to delay or advance a given branch point to a target parameter value. The algorithm consists of solving an optimization problem constrained by an augmented system of equations that characterize the location of the branch points. The flexibility and robustness of the method also allow us to advance or delay a Hopf bifurcation to a target value of the bifurcation parameter, as well as controlling the oscillation frequency. We will apply this technique on systems arising from biology, fluid dynamics, and engineering, such as the FitzHugh-Nagumo model, Navier-Stokes, and hyperelasticity equations.

Multidimensional transonic shock waves and free boundary problems
Chen, G Feldman, M Bulletin of Mathematical Sciences volume 12 issue 01 (18 Mar 2022)
Brexit and bots: characterizing the behaviour of automated accounts on Twitter during the UK election.
Bruno, M Lambiotte, R Saracco, F EPJ data science volume 11 issue 1 17 (01 Jan 2022)
Rheology of Growing Axons
Oliveri, H de Rooij, R Kuhl, E Goriely, A (2022)
The role of clearance in neurodegenerative diseases
Brennan, G Thompson, T Oliveri, H Rognes, M Goriely, A (2022)
Tue, 21 Jun 2022

16:30 - 17:30
C1

Amenable actions and purely infinite crossed products

Julian Kranz
(University of Münster)
Abstract

Since the completion of the Elliott classification programme it is an important question to ask which C*-algebras satisfy the assumptions of the classification theorem. We will ask this question for the case of crossed-product C*-algebras associated to actions of nonamenable groups and focus on two extreme cases: Actions on commutative C*-algebras and actions on simple C*-algebras. It turns out that for a large class of nonamenable groups, classifiability of the crossed product is automatic under the minimal assumptions on the action. This is joint work with E. Gardella, S. Geffen, P. Naryshkin and A. Vaccaro. 

Tue, 14 Jun 2022

16:00 - 17:00
C1

Semifinite tracial ultraproducts

James Gabe
(University of Southern Denmark)
Abstract

One of the most important constructions in operator algebras is the tracial ultrapower for a tracial state on a C*-algebra. This tracial ultrapower is a finite von Neumann algebra, and it appears in seminal work of McDuff, Connes, and more recently by Matui-Sato and many others for studying the structure and classification of nuclear C*-algebras. I will talk about how to generalise this to unbounded traces (such as the standard trace on B(H)). Here the induced tracial ultrapower is not a finite von Neumann algebra, but its multiplier algebra is a semifinite von Neumann algebra.

Subscribe to