Tue, 07 Jun 2022
16:00
C1

C*-algebras and multidimensional dynamics, ideal structure

Kevin Brix
(University of Glasgow)
Abstract

 I will discuss ongoing work with Toke Carlsen and Aidan Sims on ideal structure of C*-algebras of commuting local homeomorphisms. This is one aspect of a general attempt to bridge C*-algebras with multidimensional (symbolic) dynamics.

Tue, 31 May 2022

16:00 - 17:00
C1

An introduction to Hirschman-Widder densities and their preservers

Alex Belton
(University of Lancaster)
Abstract

Hirschman-Widder densities may be viewed as the probability density functions of positive linear combinations of independent and identically distributed exponential random variables. They also arise naturally in the study of Pólya frequency functions, which are integrable functions that give rise to totally positive Toeplitz kernels. This talk will introduce the class of Hirschman-Widder densities and discuss some of its properties. We will demonstrate connections to Schur polynomials and to orbital integrals. We will conclude by describing the rigidity of this class under composition with polynomial functions.

 This is joint work with Dominique Guillot (University of Delaware), Apoorva Khare (Indian Institute of Science, Bangalore) and Mihai Putinar (University of California at Santa Barbara and Newcastle University).

Hyperbolically embedded subgroups and quasi-isometries of pairs
Hughes, S Martínez-Pedroza, E Canadian Mathematical Bulletin 1-16 (10 Jan 2023)
Thu, 12 May 2022

12:00 - 13:00
L5

Quantitative De Giorgi methods in kinetic theory for non-local operators

Amélie Loher
(University of Cambridge)
Abstract

We derive quantitatively the weak and strong Harnack inequality for kinetic Fokker--Planck type equations with a non-local diffusion operator for the full range of the non-locality exponents in (0,1).  This implies Hölder continuity.  We give novel proofs on the boundedness of the bilinear form associated to the non-local operator and on the construction of a geometric covering accounting for the non-locality to obtain the Harnack inequalities.  Our results apply to the inhomogeneous Boltzmann equation in the non-cutoff case.

Bootstrapping boundary-localized interactions II. minimal models at the boundary
Behan, C Di Pietro, L Lauria, E van Rees, B Journal of High Energy Physics volume 2022 issue 3 (22 Mar 2022)
Lattices in a product of trees, hierarchically hyperbolic groups and virtual torsion-freeness
Hughes, S Bulletin of the London Mathematical Society volume 54 issue 4 1413-1419 (01 Aug 2022)
Mon, 09 May 2022

12:45 - 13:45
L1

Topological defects and generalised orbifolds

Ingo Runkel
(University of Hamburg)
Abstract

Topological defects in quantum field theory can be understood as a generalised notion of symmetry, where the operation is not required to be invertible. Duality transformations are an important example of this. By considering defects of various dimensions, one is naturally led to more complicated algebraic structures than just groups. So-called 2-groups are a first instance, which arise from invertible defects of codimension 1 and 2. Without invertibility one arrives at so-called "fusion categories”. I would like to explain how one can "gauge" such non-invertible symmetries in the case of topological field theories, and I will focus on results in two and three dimensions. This talk is based on joint work with Nils Carqueville, Vincentas Mulevicius, Gregor Schaumann, and Daniel Scherl.

Tue, 26 Apr 2022

12:00 - 13:00
L3

What is the iε for the S-matrix?

Holmfridur S. Hannesdottir
(IAS Princeton)
Abstract

Can the S-matrix be complexified in a way consistent with causality? Since the 1960's, the affirmative answer to this question has been well-understood for 2→2 scattering of the lightest particle in theories with a mass gap at low momentum transfer, where the S-matrix is analytic everywhere except at normal-threshold branch cuts. We ask whether an analogous picture extends to realistic theories, such as the Standard Model, that include massless fields, UV/IR divergences, and unstable particles. Especially in the presence of light states running in the loops, the traditional iε prescription for approaching physical regions might break down, because causality requirements for the individual Feynman diagrams can be mutually incompatible. We demonstrate that such analyticity problems are not in contradiction with unitarity. Instead, they should be thought of as finite-width effects that disappear in the idealized 2→2 scattering amplitudes with no unstable particles, but might persist at higher multiplicity. To fix these issues, we propose an iε-like prescription for deforming branch cuts in the space of Mandelstam invariants without modifying the analytic properties. This procedure results in a complex strip around the real part of the kinematic space, where the S-matrix remains causal. To help with the investigation of related questions, we introduce holomorphic cutting rules, new approaches to dispersion relations, as well as formulae for local behavior of Feynman integrals near branch points, all of which are illustrated on explicit examples.

Mon, 16 May 2022

12:45 - 13:45
L1

Galois conjugate TQFTs

Rajath RADHAKRISHNAN
(QMUL)
Abstract

The line operators in a 2+1D TQFT form an algebraic structure called a modular tensor category (MTC). There is a natural action of a Galois group on MTCs which maps a given TQFT to other 'Galois conjugate' TQFTs. I will describe this Galois action and give several examples of Galois conjugate TQFTs. Galois action on a unitary TQFT can result in a non-unitary TQFT. I will derive a sufficient condition under which unitarity is preserved. Finally, I will describe the invariance of 0-form and 1-form symmetries of TQFTs under Galois action.    

Fri, 10 Jun 2022

14:00 - 15:00
Online

Smith–Treumann theory and the categorical conjecture

Joshua Ciappara
(University of Sydney)
Further Information

This seminar will be at the normal time of 2pm, this is a change from previous announcements!

Abstract

In the early 2010s, Riche and Williamson proposed new character formulas for simple and indecomposable tilting modules over reductive algebraic groups $G$ in positive characteristic. Even better, they showed their formulas would follow from a conceptually satisfying "categorical conjecture", which they were able to prove for $G = GL_n$. Our first goal in this talk will be to explain the statement of the categorical conjecture, indicating its connection to representation theory and assuming minimal background knowledge. Subsequently, we will introduce Smith–Treumann theory and outline how it may be applied to prove the categorical conjecture in general. Time permitting, we will conclude with remarks on future directions of study.

Subscribe to