On systems of maximal quantum chaos
Note the unusual time and date
Abstract
A remarkable feature of chaos in many-body quantum systems is the existence of a bound on the quantum Lyapunov exponent. An important question is to understand what is special about maximally chaotic systems which saturate this bound. Here I will discuss a proposal for a `hydrodynamic' origin of chaos in such systems, and discuss hallmarks of maximally chaotic systems. In particular I will discuss how in maximally chaotic systems there is a suppression of exponential growth in commutator squares of generic few-body operators. This suppression appears to indicate that the nature of operator scrambling in maximally chaotic systems is fundamentally different to scrambling in non-maximally chaotic systems.