Thu, 25 Feb 2021
17:00
Virtual

A Partial Result on Zilber's Restricted Trichotomy Conjecture

Benjamin Castle
(University of California Berkeley)
Abstract

Zilber's Restricted Trichotomy Conjecture predicts that every sufficiently rich strongly minimal structure which can be interpreted from an algebraically closed field K, must itself interpret K. Progress toward this conjecture began in 1993 with the work of Rabinovich, and recently Hasson and Sustretov gave a full proof for structures with universe of dimension 1. In this talk I will discuss a partial result in characteristic zero for universes of dimension greater than 1: namely, the conjecture holds in this case under certain geometric restrictions on definable sets. Time permitting, I will discuss how this result implies the full conjecture for expansions of abelian varieties.

Nonlinear independent component analysis for continuous-time signals
Oberhauser, H Schell, A (04 Feb 2021)
Tue, 23 Feb 2021
12:00
Virtual

Twistors, integrability, and 4d Chern-Simons theory

Roland Bittleston
(Cambridge DAMTP)
Abstract

I will connect approaches to classical integrable systems via 4d Chern-Simons theory and via symmetry reductions of the anti-self-dual Yang-Mills equations. In particular, I will consider holomorphic Chern-Simons theory on twistor space, defined using a range of meromorphic (3,0)-forms. On shell these are, in most cases, found to agree with actions for anti-self-dual Yang-Mills theory on space-time. Under symmetry reduction, these space-time actions yield actions for 2d integrable systems. On the other hand, performing the symmetry reduction directly on twistor space reduces the holomorphic Chern-Simons action to 4d Chern-Simons theory.

Thu, 18 Feb 2021

16:45 - 17:30
Virtual

Co-universal C*-algebras for product systems

Evgenios Kakariadis
(University of Newcastle)
Further Information

Part of UK virtual operator algebras seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

Continuous product systems were introduced and studied by Arveson in the late 1980s. The study of their discrete analogues started with the work of Dinh in the 1990’s and it was formalized by Fowler in 2002. Discrete product systems are semigroup versions of C*-correspondences, that allow for a joint study of many fundamental C*-algebras, including those which come from C*-correspondences, higher rank graphs and elsewhere.
Katsura’s covariant relations have been proven to give the correct Cuntz-type C*-algebra for a single C*-correspondence X. One of the great advantages of Katsura's Cuntz-Pimsner C*-algebra is its co-universality for the class of gauge-compatible injective representations of X. In the late 2000s Carlsen-Larsen-Sims-Vittadello raised the question of existence of such a co-universal object in the context of product systems. In their work, Carlsen-Larsen-Sims-Vittadello provided an affirmative answer for quasi-lattices, with additional injectivity assumptions on X. The general case has remained open and will be addressed in these talk using tools from non-selfadjoint operator algebra theory.

Thu, 18 Feb 2021

16:00 - 16:45
Virtual

A duality theorem for non-unital operator systems

Sam Kim
(University of Glasgow)
Further Information

Part of UK virtual operator algebra seminar: https://sites.google.com/view/uk-operator-algebras-seminar/home

Abstract

The recent work on nc convex sets of Davidson, Kennedy, and Shamovich show that there is a rich interplay between the category of operator systems and the category of compact nc convex sets, leading to new insights even in the case of C*-algebras. The category of nc convex sets are a generalization of the usual notion of a compact convex set that provides meaningful connections between convex theoretic notions and notions in operator system theory. In this talk, we present a duality theorem for norm closed self-adjoint subspaces of B(H) that do not necessarily contain the unit. Using this duality, we will describe various C*-algebraic and operator system theoretic notions such as simplicity and subkernels in terms of their convex structure. This is joint work with Matthew Kennedy and Nicholas Manor.

A convolutional neural network based cascade reconstruction for the IceCube Neutrino Observatory
Abbasi, R Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Alves, A Amin, N An, R Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Axani, S Bai, X Balagopal, A Barbano, A Barwick, S Bastian, B Basu, V Baum, V Baur, S Bay, R Beatty, J Becker, K Tjus, J Bellenghi, C BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Böser, S Botner, O Böttcher, J Bourbeau, E Bourbeau, J Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Burgman, A Busse, R Campana, M Chen, C Chirkin, D Choi, S Clark, B Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dave, P Clercq, C DeLaunay, J Dembinski, H Deoskar, K Ridder, S Desai, A Desiati, P de Vries, K de Wasseige, G de With, M DeYoung, T Dharani, S Diaz, A Díaz-Vélez, J Dujmovic, H Dunkman, M DuVernois, M Dvorak, E Ehrhardt, T Eller, P Engel, R Evans, J Evenson, P Fahey, S Fazely, A Fiedlschuster, S Fienberg, A Filimonov, K Finley, C Fischer, L Fox, D Franckowiak, A Friedman, E Fritz, A Fürst, P Gaisser, T Gallagher, J Journal of Instrumentation volume 16 issue 7 (22 Jul 2021)
Fri, 19 Feb 2021

10:00 - 11:00
Virtual

Physically based mathematical models, data and machine learning methods with applications to flood prediction

Steve Walker
(Arup)
Abstract

There are strengths and weaknesses to both mathematical models and machine learning approaches, for instance mathematical models may be difficult to fully specify or become intractable when representing complex natural or built environments whilst machine learning models can be inscrutable (“black box”) and perform poorly when driven outside of the range of data they have been trained on. At the same time measured data from sensors is becoming increasing available.

We have been working to try and bring the best of both worlds together and we would like to discuss our work and the challenges it presents. Such challenges include model simplification or reduction, model performance in previously unobserved extreme conditions, quantification of uncertainty and techniques to parameterise mathematical models from data.

Tue, 02 Mar 2021

09:00 - 11:00
Virtual

Mathematical Control Theory

Prof. Franco Rampazzo
(University of Padova)
Further Information

Please enrol at Doctoral Program page of the Dept. of Mathematics "T. Levi-Civita" of the University of Padova and select Prof. Rampazzo’s courses. Students are warmly invited to enrol via the link and Prof. Rampazzo will communicate with enrolled students prior to and during the lectures. 

Abstract

Prof. Franco Rampazzo ‘Mathematical Control Theory’ (Department of Mathematics of the University of Padova, as part of Oxford Padova connection) TT 2021
Aimed at: Any DPhil students with interest in learning about Mathematical Control Theory
Course Length:     24 hours total (to be in English) 
Dates and Times:  starts 2 March 2021 

Subscribe to